Impact of the Pedestal on Global Performance and Confinement Scalings in I-Mode

John Walk

JW Hughes, AE Hubbard, DG Whyte

MIT Plasma Science and Fusion Center

TTF 2015
The problem...

Fusion reactor characterized by three overarching requirements:

- high energy confinement – sufficient self-heating for economical power production
- low particle confinement – low enough, at least, to avoid high-Z radiative issues
- avoid, suppress, or mitigate large ELMs

A number of solutions exist:

- engineering solutions – RMP, pellet pacing
- physics solutions – QH mode, EDA H-mode, high-recycling H-modes, small-ELM regimes

but each of these still has problems – other options?
I-mode: a new solution?

![Graph showing L-mode and I-mode parameters](image)

- **P\text{ICRF} (MW)**
- **n\text{e} \left(10^{20} \text{ m}^{-3}\right)**
- **T\text{e}(0) (keV)**
- **T\text{e,ped} (keV)**
- **\langle P\rangle (atm)**
- **D\alpha**

Pedestal Structure in I-mode

- **EDA H-mode**
- **ELMy H-mode**
- **I-mode**
- **L-mode**

Graphs showing

- **Electron density (n\text{e})**
- **Electron temperature (T\text{e})**
- **normalized poloidal flux**

Legend

- **EDA H-mode**
- **ELMy H-mode**
- **I-mode**
- **L-mode**

Core T\text{e} 4 -> 8 keV

High pressure

ELM-free

Normalized poloidal flux
Good progress has been made in understanding pedestal structure, stability against ELMs in I-mode1,2. Next step: extrapolation to other devices in access3 and performance.

1JR Walk \textit{et al.}, \textit{Physics of Plasmas} 21 (2014)
2JR Walk, ScD thesis, Massachusetts Institute of Technology (2014)
3AE Hubbard, plenary talk
Temperature pedestal H-mode-like, set by plasma current, heating power

- pedestal T_e trends positively $T_e \sim I_p$, spread at given current due to heating power
- input power strongly affects pedestal temperature (as with EDA H-mode) – more properly, power per particle sets pedestal temperature at fixed current
Pedestal density separately controlled from temperature, independent of MHD limits

- with sufficient power to maintain P_{net}/n_e, temperature pedestal matched across range of fueling
- Contrasts to MHD-limited pedestals (fixed $\beta_{p,\text{ped}} \rightarrow$ limit on $n_e T_e$) – path to strongly increase pedestal beta
What does this get us?

- Independent determination of density profile (via fueling), temperature profile (via heating power) – operator control, rather than physics limits, sets pedestal

- Path to strongly improved performance in I-mode – matched increases in fueling, heating power strongly increase pedestal pressure at same size, current, field

- Good for ITER access as well: sidestep high power threshold by accessing at low density, step up to $Q = 10$ scenario with matched density, power increase

- L-mode density profile \rightarrow no impurity pinch in edge

4DG Whyte et al., APS-DPP Nov. 2011
Strong temperature pedestal supports high core temperature, pressure

- stiff \((R/L_{T_e} \sim \text{fixed})\) temperature profiles → higher \(T_{\text{ped}}\) supports greatly increased core temperatures

- provided moderate density peaking \((n_{e,0}/\langle n_e \rangle \sim 1.1 - 1.3 \text{ in I-mode})\), reaches comparable core, vol-average pressure despite relaxed \(p_{ped}\)

- fusion-reactive plasma where \(T_e > 4 \text{ keV}\), high \(T_{ped}\) maximizes fusing volume
Strong temperature pedestal supports high core temperature, pressure

\[\psi_{\text{norm}} \]

\[n_e \left[10^{20} \text{ m}^{-3}\right] \]

\[T_e \left[\text{keV} \right] \]

\[p_e \left[\text{kPa} \right] \]

\[\beta_N \]

→ same \(\langle \beta_N \rangle \), normalized confinement to ELMy H-mode
First pass at an I-mode confinement scaling

Following practice in ITER89, ITER98 scalings, express I-mode energy confinement as a power law of the form

\[\tau_E = C I_p^{\alpha_I} B_T^{\alpha_B} n_e^{\alpha_n} R^{\alpha_R} \varepsilon^{\alpha_\varepsilon} K^{\alpha_K} P_{\text{loss}}^{\alpha_P} \]

Using high-res pedestal database plus older forward- and reversed-field datasets for expanded parameter range
Reduced fitting parameter set captures I-mode physics

<table>
<thead>
<tr>
<th>(\alpha \chi)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>0.040 ± 0.066</td>
<td></td>
</tr>
<tr>
<td>(I_p)</td>
<td>0.686 ± 0.074</td>
<td></td>
</tr>
<tr>
<td>(B_T)</td>
<td>0.698 ± 0.075</td>
<td></td>
</tr>
<tr>
<td>(\bar{n}_e)</td>
<td>-0.077 ± 0.055</td>
<td></td>
</tr>
<tr>
<td>(R)</td>
<td>4.219 ± 4.623</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>0.127 ± 1.144</td>
<td></td>
</tr>
<tr>
<td>(\kappa)</td>
<td>1.686 ± 0.398</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{loss}})</td>
<td>-0.197 ± 0.048</td>
<td></td>
</tr>
<tr>
<td>(r^2)</td>
<td></td>
<td>0.713</td>
</tr>
</tbody>
</table>
Reduced fitting parameter set captures I-mode physics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_X</td>
<td>0.040 ± 0.066</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.686 ± 0.074</td>
<td></td>
</tr>
<tr>
<td>I_p</td>
<td>0.698 ± 0.075</td>
<td></td>
</tr>
<tr>
<td>B_T</td>
<td>0.698 ± 0.075</td>
<td></td>
</tr>
<tr>
<td>\bar{n}_e</td>
<td>-0.077 ± 0.055</td>
<td>-0.077 ± 0.055</td>
</tr>
<tr>
<td>R</td>
<td>4.219 ± 4.623</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>0.127 ± 1.144</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>1.686 ± 0.398</td>
<td></td>
</tr>
<tr>
<td>P_{loss}</td>
<td>-0.197 ± 0.048</td>
<td></td>
</tr>
<tr>
<td>r^2</td>
<td>0.713</td>
<td></td>
</tr>
</tbody>
</table>
Reduced fitting parameter set captures I-mode physics

<table>
<thead>
<tr>
<th>α_X</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.040 ± 0.066</td>
<td>0.014 ± 0.002</td>
</tr>
<tr>
<td>I_p</td>
<td>0.686 ± 0.074</td>
<td>0.685 ± 0.076</td>
</tr>
<tr>
<td>B_T</td>
<td>0.698 ± 0.075</td>
<td>0.768 ± 0.072</td>
</tr>
<tr>
<td>\bar{n}_e</td>
<td>−0.077 ± 0.055</td>
<td>0.017 ± 0.048</td>
</tr>
<tr>
<td>R</td>
<td>4.219 ± 4.623</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>0.127 ± 1.144</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>1.686 ± 0.398</td>
<td></td>
</tr>
<tr>
<td>P_{loss}</td>
<td>−0.197 ± 0.048</td>
<td>−0.286 ± 0.042</td>
</tr>
<tr>
<td>r^2</td>
<td>0.713</td>
<td>0.685</td>
</tr>
</tbody>
</table>
Both fits capture weak degradation of τ_E with heating power, strong response to current, field
Distinct physics phenomena from L-, H-mode scalings

<table>
<thead>
<tr>
<th>α_X</th>
<th>ITER89</th>
<th>ITER98y2</th>
<th>I-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p</td>
<td>0.85</td>
<td>0.93</td>
<td>0.68</td>
</tr>
<tr>
<td>B_T</td>
<td>0.2</td>
<td>0.15</td>
<td>0.77</td>
</tr>
<tr>
<td>\bar{n}_e</td>
<td>0.1</td>
<td>0.41</td>
<td>0.01</td>
</tr>
<tr>
<td>P_{loss}</td>
<td>-0.5</td>
<td>-0.69</td>
<td>-0.27</td>
</tr>
<tr>
<td>R</td>
<td>1.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>0.5</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

need other machine input
Distinct physics phenomena from L-, H-mode scalings

<table>
<thead>
<tr>
<th>$\alpha \chi$</th>
<th>ITER89</th>
<th>ITER98y2</th>
<th>I-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p</td>
<td>0.85</td>
<td>0.93</td>
<td>0.68</td>
</tr>
<tr>
<td>B_T</td>
<td>0.2</td>
<td>0.15</td>
<td>0.77</td>
</tr>
<tr>
<td>\bar{n}_e</td>
<td>0.1</td>
<td>0.41</td>
<td>0.01</td>
</tr>
<tr>
<td>P_{loss}</td>
<td>-0.5</td>
<td>-0.69</td>
<td>-0.27</td>
</tr>
<tr>
<td>R</td>
<td>1.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>0.5</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>
Strong B-field dependence, weak power degradation consistent with experimental observation

\[q_{95} = 3-4 \]

\[P_{\text{loss}}/\bar{n}_e S \times 10^{-20} \text{MW m} \]

\[B_T \ (T) \]

A. Hubbard et al., IAEA 2014

\[\text{stored energy, } W \sim P_{\text{net}} \tau_E \]

\[W \sim P_{\text{net}} I_p \]

little degradation of \(\tau_E \) with power
Thought experiment: apply ITER89, ITER98-like size dependence to I-mode, extrapolate to larger devices

\[
\tau_{I-mode, y_1} = 0.036 \times R^{1.5} \varepsilon^{0.3} \times I_p^{0.68} B_T^{0.77} n_e^{-0.01} P_{loss}^{-0.27}
\]

\[
\tau_{I-mode, y_2} = 0.055 \times R^2 \sqrt{\varepsilon} \times I_p^{0.68} B_T^{0.77} n_e^{-0.01} P_{loss}^{-0.27}
\]
Either extrapolates to highly favorable energy confinement on large, high-power devices.

\[\tau_E \sim 0.5 - 1.0 \text{ s for JET, } 2.5 - 8 \text{ s for ITER(!)} \]
Behavior desirable for reactor regime

- Strong response of pedestal to fueling, heating power → desirable operator control – not limited by MHD stability, transport constraints, reflected in global response of confinement with power, density
- consistent with access, $Q = 10$ operation on ITER
- temperature pedestal without density pedestal desirable for reactor operation – high core pressure, fusion reactivity with good fueling behavior, impurity handling

Confinement scaling laws consistent with observed behaviors

- captures weak degradation with heating power, strong dependence on magnetic field (suppression of H-mode transition?)
- Extrapolate highly favorably to larger, higher-power devices, consistent with benefits of higher-field operation as well
Questions remain

Access on other devices

- experiments on ASDEX-Upgrade, DIII-D – some possible observations on JET?
- access thresholds not well-understood, necessary for extrapolation – input from other devices essential to lock down scaling as well

Understanding of pedestal, global limits

- higher densities desirable for burning plasmas, $P_\alpha \sim n_i^2$ – I-mode limited to lower densities, how hard can we push while maintaining temperature pedestal?
- pedestal regulation by WCM, but physics not well-understood – upper bound ultimately set by H-mode transition, or is there other limit?
Supplemental Slides
Pedestal impacts core, global performance

\[W_{MHD} \text{ [kJ]} \]

\[p_{95} \text{ [kPa]} \]

JR Walk (MIT PSFC)

Pedestal Structure in I-mode

30 Apr. 2015
I-mode temperature, pressure pedestal widths uncorrelated with physics parameters

\[\rho_{i,\text{pol}}? \quad \nu_{95}^*? \quad q_{95}? \quad P_{\text{net}}/n_e? \]

\[\Delta_T \text{[norm. pol. flux]} \quad \Delta_p \text{[norm. pol. flux]} \]

\[\rho_{i,\text{pol}} \rightarrow \text{ion-orbit-loss models for } E_r \text{ well width} \]
I-mode temperature, pressure pedestal widths uncorrelated with physics parameters

\[\rho_{i, \text{pol}} \quad \nu^*_9 ? \quad q_9 ? \quad P_{\text{net}/n_e} ? \]

edge collisionality \rightarrow bootstrap current instability drive
I-mode temperature, pressure pedestal widths uncorrelated with physics parameters

\[\rho_{i,\text{pol}} \quad \nu_{95}^* \quad q_{95} \quad P_{\text{net}}/n_e \]

edge safety factor \(\rightarrow \) magnetic shear, ballooning stabilization
I-mode temperature, pressure pedestal widths uncorrelated with physics parameters

\[\rho_{i,pol} \quad \nu_{95}^* \quad q_{95} \quad P_{\text{net}}/n_e? \]

heating power per particle → heat flux through temperature pedestal

\[\Delta_T \quad \Delta_p \]

\[P_{\text{net}}/n_e [\text{MW}/10^{20} \text{ m}^{-3}] \]
Pedestal width uncorrelated with $\beta_{p,\text{ped}}$, contrary to KBM limit

- I-mode pedestal width shows no trend with $\beta_{p,\text{ped}}$, consistently broader than predicted by EPED1-like KBM limit $\Delta_\psi = 0.076\beta^{1/2}_{p,\text{ped}}$

- Intuitively, pedestal ∇p insufficient to drive ballooning-like instabilities
I-mode pedestal scalings consistent with stability against peeling-ballooning MHD

- Ballooning stability, to lowest order, limits pedestal β_p in ELMy H-mode; I-mode n_e, T_e independent, rather than fixed $n_e T_e$

- Pedestal β_p scaling with density consistent with constant $T_{e,95}/B_p \rightarrow T_e \sim I_p$, rather than $T_e \sim 1/n_e$
I-mode pedestal scalings consistent with stability against peeling-ballooning MHD

- Ballooning stability, to lowest order, limits pedestal β_p in ELMy H-mode; I-mode n_e, T_e independent, rather than fixed $n_e T_e$

- Pedestal β_p scaling with density consistent with constant $T_{e,95}/B_p \rightarrow T_e \sim I_p$, rather than $T_e \sim 1/n_e$
I-mode pedestal strongly stable against peeling-ballooning MHD, KBM turbulence

- $P_{net} = 2.9 \text{ MW}$
- $W = 177 \text{ kJ}$
- high-current, high stored energy
- $\beta_{p,ped} = 0.077$
- $\psi = 2.14\%$
- $\Delta_{EPED} = 2.10\%$

Graph:

- Normalized Pedestal Current vs Normalized Pressure Gradient (α)
- $\beta_{p,ped} = 0.077$
- $\psi = 2.14\%$
- $\Delta_{EPED} = 2.10\%$

Graph Details:

- $P_{net} = 2.9 \text{ MW}$
- $W = 177 \text{ kJ}$
- $\beta_{p,ped} = 0.077$
- $\psi = 2.14\%$
- $\Delta_{EPED} = 2.10\%$

Legend:

- $\pi_e [10^{20} \text{ m}^{-3}]$
- core $T_e [\text{keV}]$
- edge $T_e [\text{keV}]$
- $\langle p \rangle [\text{atm}]$
- H_α

Time:

- $t [\text{s}]$

Modelled Phase:

- 1120824019
- 1.3MA
- 5.3T

Note:

- JR Walk (MIT PSFC)
- Pedestal Structure in I-mode
- 30 Apr. 2015