Divertor and Edge Physics program

Relationship to other programs
General program description
Past 5 year highlights
Transport
Neutrals
Impurities
High heat flux & particle handling

Presented by B. Lipschultz
C-Mod in relation to other tokamaks

- C-Mod operation overlaps that of other tokamaks in edge/divertor dimensionless parameters w/different dimensional parameters
- Some of the differences in edge & divertor dimensional parameters are
 - Higher density (similar to ITER in divertor)
 - Higher parallel heat flux (300-500 MW/m², 3-5x other tokamaks, similar to ITER)
 - Higher divertor opacity to Ly_α (similar to ITER)
 - Higher SOL plasma pressures (similar than ITER)
- The range in dimensionless parameters can be different too
 - High collisionality (~ 1-4 x ν* for other tokamaks and ITER)
 - Short λ_{0,mfp}/λ_{SOL} & λ_{0,mfp}/λ_{Div} (~ 2-4x less than other tokamaks, similar to ITER)
- Different scalings for neutral penetration may help unfold the roles of atomic and plasma physics
- Operation with Mo first wall makes an important contribution
 - ASDEX-U is gradually converting to W
C-Mod in relation to other tokamaks

- The C-Mod boundary research program complements work being done around the world

<table>
<thead>
<tr>
<th>Research area</th>
<th>C-Mod</th>
<th>Other tokamaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma transport</td>
<td>Turbulence visualization Probes, D_α, Thomson from particle balance</td>
<td>NSTX, DIII-D (core) DIII-D, JET DIII-D, JET (by C-Mod)</td>
</tr>
<tr>
<td>Turbulence imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbulence statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial flux analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impurities (through ‘lifecycle’)</td>
<td>Mo sources, transport, screening, redeposition Mo physical sputtering</td>
<td>C sources, transport, screening, redeposition C chemical erosion</td>
</tr>
<tr>
<td>Neutral transport</td>
<td>main chamber recycling Compare w/div leakage Hydrogen and metals n-n collisions important</td>
<td>Emphasis on divertor effects, cryopump, T codeposition w/C Kinetic neutrals</td>
</tr>
<tr>
<td>ELM effect on SOL and divertor</td>
<td>Concentrating on small or no ELM regimes</td>
<td>Major program on DIII-D, JET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relation to IPPA goals

The C-Mod boundary physics program addresses a number of issues listed in the IPPA document.

- **3.1.1 Turbulence and transport (3.1.1.1, 3.1.1.2, 3.1.1.3)**
 - Advance the scientific understanding of turbulent transport, forming the basis for a reliable predictive capability in externally controlled systems.

- **3.1.4 Plasma boundary physics (3.1.4.1, 3.1.4.2, 3.1.4.3)**
 - Advance the capability to predict detailed multi-phase plasma-wall interfaces at very high power- and particle-fluxes.

- **3.3.1 Profile control (3.3.1.4, 3.3.1.5 - low \(n_e \) divertor operation)**
 - Assess profile control methods for efficient current sustainment and confinement enhancement in the advanced tokamak, consistent with efficient divertor operation, for pulse lengths much greater than energy confinement times.

- **3.4.1 Plasma technologies (3.4.1.3 - Plasma facing components)**
 - Develop enabling technologies to support the goals of the scientific program, including methods for plasma measurements, ….; develop plasma facing components….
C-Mod Boundary physics program

- Optimize the performance of fusion devices through
 - minimal core impurities (radiation, fuel dilution),
 - maximal first-wall lifetime, power handling
 - divertor design for optimal impurity/neutral compression and pumping

- To those ends we concentrate our research on
 - Edge plasma transport
 - Our primary emphasis because it is the determining factor for heat and particle loadings, impurity sources and transport
 - Neutral dynamics and fueling
 - Impurities

- Develop predictive capability scaleable to reactor

- We also identify and develop hardware and techniques for
 - Heat flux handling & density control
Highlights of the previous 5 year period

- A technique was developed to derive Γ_\perp based on particle balance
 - $v_{\text{eff}} (\equiv \Gamma_\perp/n)$ and $D_{\text{eff}} (\equiv \Gamma_\perp/\nabla n)$ increase with distance into the SOL
 - Radial transport can compete w/parallel transport,
 - ‘main chamber recycling’ shown to affect fueling, impurities,…
- ‘Bursty’, turbulent cross-field transport has been identified
 - Linked to the strong radial transport, potential link to density limit,
 - Development of 2-D visualization technique (w/Zweben).
- Divertor detachment studies provided important contributions
 - Determination of the effect of geometry (vertical vs horizontal plate)
 - Achievement of detachment under high heat flux H-mode conditions.
 - Demonstration and measurement of recombination and opacity effects,
- Development of high-Z PFC operation compatible with high-power plasmas
- Impurity screening shown to be dependent on source location, impurity mass
- Demonstration of low (e.g. N, C) and high-Z (Mo) screening similarities
- Showed close coupling between divertor neutral compression and transport
- Divertor leakage is a minor contributor to main chamber neutrals.
Edge Transport

- Determines heat/particle loads on surrounding structures
- Sets boundary conditions affecting core transport quality
- May play a role in setting density limit
- A controlling factor in impurity transport

Status

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-averaged profiles</td>
<td>Used to extract Γ_\perp transport fluxes</td>
</tr>
<tr>
<td></td>
<td>Imply non-diffusive transport</td>
</tr>
<tr>
<td>Turbulence studies</td>
<td>Initial turbulence visualization</td>
</tr>
<tr>
<td></td>
<td>Initial turbulence statistics</td>
</tr>
<tr>
<td>Numerical simulation</td>
<td>Matching some experimental measurements</td>
</tr>
<tr>
<td></td>
<td>Time-averaged profiles specified, not predicted</td>
</tr>
<tr>
<td>Control - exploring ideas</td>
<td></td>
</tr>
</tbody>
</table>

Goals/Program

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explore transport scalings and role of plasma vs neutral physics</td>
<td></td>
</tr>
<tr>
<td>Fully identify/characterize turbulence responsible for transport</td>
<td></td>
</tr>
<tr>
<td>1st principle simulations reproduce</td>
<td>Turbulence characteristics</td>
</tr>
<tr>
<td></td>
<td>Time-averaged profiles</td>
</tr>
<tr>
<td>Develop capability to modify radial transport</td>
<td></td>
</tr>
</tbody>
</table>
Edge transport: time-averaged profiles

Status
- Non-exponential SOL profiles
 - radial transport large
 - \(\Rightarrow\) wall recycling & impurity sources
 - Radial transport very non-diffusive
 - cross-machine comparisons started
- 2D fluid models
 - transport coeff. are fitting parameters
 - turbulent transport not included
- Strong parallel flows measured
 - Relationship to transport still unknown

Goals
- Extract relationships between time-averaged profiles &
 - Radial particle and heat fluxes,
 - poloidal variations in transport,
 - role of atomic vs plasma physics
 - scalings including the density limit
Edge transport: time-averaged profiles

Program

- Expand profile studies
 - More poloidal points & discharge types
 - across-machines (DIII-D, JET, NSTX, ASDEX Upgrade)

- Diagnostics
 - SOL Thomson (‘05 -)
 - Inner wall probe, D\(\alpha\) (‘04 -)
 - D\(\alpha\) profile measurements

- Correlations among
 - Transport changes,
 - Turbulence changes, and
 - Neutrals changes

- Parallel flows
 - Doppler spectroscopy (‘04 -)
 - Probe (‘04 -)
Edge transport - turbulence studies

Status
- Visualization technique (GPI)
 - Follows ‘striations’ moving radially
 - Gives k-spectrum (size distribution)
- Statistics of fluctuations
 - probe and Dα statistics consistent
 - Bursty, non-Gaussian
 - Non-diffusive transport
 - Probe transport fluxes suspect
 - Diagnostics show radial velocity of ‘bursts’ or ‘striations’ ≤ 500 m/s
- Turbulence moves inside separatrix near density limit
 - Large convective heat losses depress Te
 - Potential cause of thermal instability

Goal - understand turbulence mechanisms
- Characterize turbulence
 - Poloidal variation
 - Statistics, k-spectra
 - Transport fluxes
 - scalings
- Compare with numerical simulation

C-Mod 5-yr program review May 13-14, 2003
Edge transport- turbulence studies

Program
- Expand turbulence visualization through gas puff imaging (GPI)
 - Inner SOL (‘03 -)
 - Better resolution, < 1 mm (‘03 -)
- Develop direct \(\tilde{n}, \tilde{T} \) measurements
 - Line ratio technique
 - 1-D prototype (‘03 -)
 - 2-D implementation (‘05 -)
- Expand time series measurements
 - Better statistics (‘04 - ‘07)
 - More probes, \(D_{\alpha}, \) SOL Thomson (‘03 -)
 - More poloidal locations (‘04 -)
- Density limit physics
 - changes in turbulence

\[\begin{array}{c|c|c|c|c|c|c|c|c|c} \hline \text{density (m}^{-3}\text{)} & 10^{18} & 10^{19} & 10^{20} \\ \hline \text{\(I_{(728\text{ nm})}/I_{(706\text{ nm})} \)} & 10 & 0.1 & 1.0 & 10.0 & 0.1 & 1.0 & 10.0 & 0.1 & 1.0 & 10.0 \\ \hline \text{\(I_{(668\text{ nm})}/I_{(728\text{ nm})} \)} & 237.4 & 95.4 & 38.3 & 15.4 & 6.2 & 2.5 & 1.0 & 1.0 & 1.0 & 1.0 \\ \hline \text{T\(\text{e (eV)} \)} & 192 & 92.4 & 44.6 & 21.5 & 10.4 & 5.0 \\ \hline \text{n\(\text{e (10^{18} m}^{-3}\text{)} \)} & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\ \hline \end{array} \]
Status of collaborative work

- Turbulence simulations
 - Show similar striation movement
 - Similar perp. & poloidal size scale
 - Roughly reproduces k-spectrum
 - Predicts in-out asymmetry
 - Time-averaged profiles are specified

Goals

- 1st principle models reproduce
 - Turbulence characteristics for a range in plasma operation
 - Time-averaged profiles based only on input of particle and heat fluxes
Edge transport- numerical simulation

Program (collaborative)

- Close coupling to turbulence simulations/theory
 - Hallatschek (IPP-Garching)
 - Non-local turbulence
 - Move towards relying on more physical inputs
 - BOUT simulations (Xu, Nevins, Umansky, LLNL)
 - X-pt, plasma effects
 - Impurity effects (are there impurity ‘blobs’ and ‘holes’?)
 - Stotler (PPPL)
 - atomic physics of gas-puff imaging diagnostic
Edge transport- control turbulence/profiles

Status
- Ideas are being proposed
- Some techniques have been demonstrated elsewhere
 - ergodic limiter
 - Electric H-mode thru biasing and RF
 - we will need different tools

Goal
- Identify/develop turbulence and transport modification techniques

Program
- Test ICRF edge-heating to modify edge E_r
- Utilize slow/small Li-pellet injection to produce sharp density gradient
Neutral Dynamics

- Determines fueling
- Determines capability to pump the divertor (specifically He)
- Can affect core performance (edge cooling)
- May play a role in edge plasma transport

<table>
<thead>
<tr>
<th>Status</th>
<th>Goals/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral distribution inherently 3D</td>
<td>More detailed measurements</td>
</tr>
<tr>
<td>Models unsuccessful in simultaneously matching plasma and neutral distribution all around the plasma</td>
<td>1st principle models reproduce observations</td>
</tr>
<tr>
<td></td>
<td>Optimize cryopump</td>
</tr>
<tr>
<td></td>
<td>Understand the role of wall & geometry</td>
</tr>
</tbody>
</table>
Neutral dynamics - experiment

Status
- Main chamber pressure primarily due to radial transport, not divertor leakage
- DEGAS & B2/EIRENE neutral models predict divertor pressures 2-10 x too low
- low neutral sources, too low wall interaction
- Upper ’open’ divertor pressures similar to closed divertor for USN appears to be good location for cryopump
- Evidence of wall pumping direct implantation? codeposition?

Goals
- Constrain modeling with multiple toroidal & poloidal measurements
- Clarify the relative roles of fueling sources (wall vs divertor), wall pumping/release & magnetic geometry
- Optimize cryopump performance

Proposed cryopump Operating point
Neutral dynamics - experiment

Program

- Measure
 - Poloidal pressure distribution
 - Conductances with/without plasma
 - D co-deposition studies (w/ U. Wisc.)

- Explore the effect of magnetic geometry on fueling & recycling

- Understand cryopump performance dependence on
 - magnetic geometry
 - plasma conditions

- Diagnostics
 - Localized gas puff delivery (‘03 -)
 - Penning gauges (‘02 -)
 - Surface analysis stations (‘04 -)
 - Wall flux measurements (transport topic)
Neutral dynamics - modelling

Goals
- Constrain models with poloidal distribution of
 - Neutral pressures
 - Core fueling
 - Wall sources
- Clarify the role of
 - Wall interaction
 - Wall pumping/release
- Correctly predict measured pressures

Program
- Utilize additional measurements to benchmark
 - B2/EIRENE (U. Toronto - Lisgo/Stangeby)
 - DEGAS2 (PPPL-Stotler)

• 2D grid shown, 3D also used
Impurity transport

- Determines the core dilution/radiation
- Determines divertor power dissipation
- Determines pumping of He
- Plays a role in tritium codeposition

<table>
<thead>
<tr>
<th>Status</th>
<th>Goals/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Modelling predictions uncertain</td>
<td>- Improve characterization of underlying transport</td>
</tr>
<tr>
<td>- Significant high-Z PFC experience (C-Mod)</td>
<td>- Models reproduce experiment</td>
</tr>
<tr>
<td>- Wall sources are important because penetration is efficient</td>
<td>- Measure/characterize impurities at all points in their ‘lifecycle’</td>
</tr>
<tr>
<td>- RF effects can be important</td>
<td>- Clarify important sources/sinks</td>
</tr>
</tbody>
</table>
Impurity sources & transport

Status

- Low-field side impurity screening is poor
 - True for low-Z and molybdenum
 - Screening improves at high density
- C-Mod divertor sources fairly well in hand
 - Physical sputtering in divertor
 - B chemical sputtering exists but low
- Divertor impurity compression
 - Improves with n_e and impurity mass
 - Modelling reproduces trends
- RF sheath-rectification -> impurity sources
- Modelling of core levels uncertain because of poor plasma transport understanding

Goals

- Integrate impurity and edge transport studies
- Better diagnostic coverage
- Benchmark against simulations
Impurity sources & transport

Program

- Additional spectrometers and views
 - Poloidal source measurements (‘03 -)
 - LH launcher sources (‘03 -)

- Impurity density measurements
 - low charge state CXRS in SOL (‘05 -)
 - CXRS in core - U. Texas (‘05 -)

- In situ deposition measurements
 - Quartz Microbalance (Julich collab.)
 - Overall deposition rate (‘04 -)
 - Surface analysis (Whyte/UW, Robertson/UM)
 - Mo, B deposition rate (RBS)

- DIVIMP modelling of fluxes/densities
 - Lisgo/Stangeby - U. Toronto

JET Quartz Microbalance (QMB)

- Reference crystal (RC)
- ASIC application specific integrated circuit
- Deposition crystal (DC)
- Temperature crystal (TC)

1 cm
Divertor and Edge Physics Research Goals

Transport/Turbulence

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{n}, \bar{T}) SOL/EDGE Turbulence Measurements</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Multipoint 2-D measurement of (\bar{n}, \bar{T})</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Inner-wall scanning probe</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Measurements of Turbulence/Transport in Inner SOL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Development of Inner-wall (D_\alpha) profile & fluctuation Diag.</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Studies of Edge Turbulence/Transport in AT Plasmas</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gas-Puff-Imaging with 28 fr, 1 MHz camera</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gas-Puff-Imaging with 312 fr, 1 MHz camera</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gas-Puff-Imaging of Inner SOL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>SOL profiles, turbulence structure & dynamics</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Transport scaling/density limit physics</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Neutral Dynamics/Fueling

<table>
<thead>
<tr>
<th>Density control scoping</th>
<th>Cryopump operation/optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-null configurations</td>
<td>✔</td>
</tr>
<tr>
<td>Poloidal pressure distribution, gas conductances</td>
<td>✔</td>
</tr>
<tr>
<td>Wall pumping and release</td>
<td>✔</td>
</tr>
<tr>
<td>Inner wall recycling</td>
<td>✔</td>
</tr>
<tr>
<td>Divertor and main-chamber neutral pressures, gas leakage, pumping</td>
<td>✔</td>
</tr>
</tbody>
</table>

Impurity Sources/Transport

<table>
<thead>
<tr>
<th>Impurity sources: ICRF</th>
<th>Impurity sources/sinks: LH</th>
<th>SOL profile optimization for LHCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Meas.: Upper chamber, LH launcher; deposition measurements (QMB, RBS)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Impurity densities in Core, SOL (CXRS) and Divertor</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Measurement: Inward ‘blob’ convection of impurities</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Main-chamber impurity sources, sinks and transport</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Key:
- Red: Research Topic
- Green: Diagnostic Develop
- Blue: Theory/Simulation
High heat flux handling & density control

- Important for the success of the C-Mod program
- Also supports advancement of ITER/BPX

Status

- Presently, 5 - 1.0 s pulse, 4 MW RF
 - melting at some divertor leading edges (shielded from the core)
- Energy deposited will increase
 - Power increase by $\sim x2$, 5 seconds
 - $\Delta T^o = q_\perp (W/m^2) \times \gamma_{Mo} \times (t/sec)^{0.5}$
 - ΔT increases by $\sim x4$
 - extrapolation \Rightarrow melting at strike points if nothing is done
- No pumping, but H-mode densities might be too high for AT

Goals/Program

- Develop improved surface temperature monitoring
- Extend divertor heat-handling capability ($\sim x2$).
- Extend power dissipation techniques (efficacy, low-n_e)
- Cryopump operation forces gas-puffing to maintain n_e.

C-Mod 5-yr program review May 13-14, 2003
High heat flux handling & density control: development

- Implement measurements/techniques (‘03–’05)
 - surface temperature measurement
 - strike point sweeping
 - dissipative divertor
 - divertor impurity puffing
- Test advanced divertor materials (‘03–’05)
 - single tungsten-brush tiles (w/Sandia National Lab)
 - W-brush modules (ITER/BPX prototype)
 - decision on liquid-metal test (collab. w/SNL)
- New outer divertor (‘05 -)
- Evaluate divertor target performance (‘03–’08) with
 - increasing pulse length
 - increasing power
 - above dissipation techniques/materials
- Optimize cryopump
 - neutral pressure & conductance studies during design
 - magnetic geometry optimization after installation

Sandia W brush tile

~ 1.2 cm
High Heat Flux Handling: new hardware

- New upper divertor (‘04-’05)
 - necessary for cryopump
 - necessary for ~ double-null
 - optimized for pumping

- New outer divertor (‘05-’06)
 - no toroidal gaps/leading edges
 - better alignment
 - simplified geometry
 - W-brush tile section (1/10th)

- ‘Advanced’ divertor (‘06 - ‘07)
 - full outer divertor coverage with W-brush
 - potential for other improvements
High heat flux handling & density control

Calendar Year

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solutions

- Strike point sweeping
- Dissipative divertor development
- New inner div.
- W brush tile test
- New outer divertor
- Full toroidal advanced divertor
- Cryopump/Upper divertor
- Heat flux upper divertor (if double null)
- W brush tile module
- Possible liq. metal test module

Diagnostics

- Expand impurity source & deposition measurements
- Diagnose effect of LH on SOL and energy fluxes
- Core/SOL impurity densities (CXRS)
- Outer/Inner div. IR surface T

Power loading

- ICRF: 5 MW, 6 MW
- LHCD: 2 MW, 3 MW

Pulse length

- 1.5 sec, 3 sec, 5 sec
Our intent is to continue to make fundamental contributions:

- Steady state profile transport analysis to understand
 - Poloidal variations, machine scalings -> uncover underlying physics
- Turbulence studies
 - Direct measurement of \tilde{n}, \tilde{T},
 - improved images/analysis,
 - Control if possible
- Measure and model the 3D aspects of neutral dynamics
- Develop separable divertor particle and heat control functions
- Characterize impurities at every step in ‘lifecycle’ - develop ‘predictive codes’.
- Optimize high-Z first-wall for long-pulse AT operation

Providing vital support for overall physics program

- Advanced Tokamak
- Burning Plasma