H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Mod

Presented by Amanda Hubbard

With Contributions from
J. Hughes, I. Bespamyatnov*, T. Biewer#, E. Edlund,
M. Greenwald, B. LaBombard, L. Lin, Y. Lin, R. McDermott,
M. Porkolab, J. Rice, W. Rowan*, J. Snipes, J. Terry,
S. Wolfe, S. Wukitch
and the Alcator C-Mod Group

MIT Plasma Science and Fusion Center
*Univ. Texas Fusion Research Center
#Oak Ridge National Laboratory

Research supported by U.S. Dept. of Energy

APS-DPP Meeting, Philadelphia
31 October 2006
OUTLINE

• Introduction
 – Overview of H-mode regimes and prior pedestal results

• Influence of magnetic field B on
 – L-H threshold
 – Pedestal scalings
 – H-mode operating space, regimes

• Role of field and current direction
 – Review of results on configuration dependence
 – Flows and L-H thresholds with reversed field, current
 – Edge profile evolution in L-mode
 – Pedestals with reversed field

• Summary

Motivation:
H-mode profiles are ‘stiff’; Stored energy W proportional to $p_{e,ped}$ across all the operating space discussed.
Several H-mode regimes obtained on C-Mod

ELM-free H-mode
- Low particle transport, transient H-modes.

Enhanced D-Alpha (EDA)
- Quasicoherent mode leads to steady n_e.
- Favored by higher q, ν^*.

Small ("Type II"?) ELMs
- Small ELMs on top of high D_α.
- Occurs at higher pressure than EDA.
- Also gives steady n_e.

Discrete ELMs
- Recent observation, will be focus of talk by J. Terry, this session.
High-resolution diagnostics measure pedestal electron profiles and ionization rates

- Key diagnostic is Edge TS
 - Top view, 1.5 mm δR, 16 ms δt.
 - ECE used for faster T_e.
- SOL profiles from scanning probes.
- D_α profiles from camera enable derivation of neutral and ionization rate profiles, key to fueling and n_e pedestal.
 - Find $L_D \leq L_{ne} < \lambda_{ion}, \lambda_{CX}$
- Diffusivity D_{eff} derived from source, n_e profiles.
 - Find D_{eff} “well” in pedestal, decreasing with higher I_p.

![Diagram of diagnostics and profiles](image-url)
Key prior pedestal scalings (mainly at B=5.4 T)

- **Strong correlation of n_{ped} with I_p, weaker dependence on neutral source.**
 - Gas puffing has little effect in strong barriers, i.e., high I_p H-modes.
 - SOL largely opaque to neutrals in these cases.
- **Narrow n_e, T_e, p_e pedestal widths ($\Delta \sim 2$-5 mm).**
 - Little systematic variation with I_p, n_e etc.
Key prior pedestal scalings (mainly at B=5.4 T)

- **Strong correlation of** n_{ped} **with** I_p, **weaker dependence on neutral source.**
 - Gas puffing has little effect in strong barriers, ie high I_p H-modes.
 - SOL largely opaque to neutrals in these cases.
- **Narrow** n_e, T_e, p_e pedestal widths ($\Delta \sim 2-5$ mm).
 - Little systematic variation with I_p, n_e etc.
- p_{ped}, ∇p_e scale with I_p^2.
 - Soft limit with higher α_{MHD} at lower ν^*.
 - Suggests **critical gradient behaviour in pedestal** as in SOL.

Hughes, PoP 2006, IAEA 2006
2005-6 campaigns expanded H-mode parameter space

- C-Mod uses exclusively RF heating, primarily 6 MW ICRF.
- B_T range for near-central heating constrained by f_{RF}.
- $2.6 < B_T < 8 \, \text{T}$ enabled by variable f_{RF} (50-80 MHz), and D(He3) as well as D(H) heating.
- $0.4 < I_p < 1.7 \, \text{MA}, \ 2.6 < q_{95} < 9.5$
 - Can now better separate I_p, q dependences.

- Also a 2006 mini-campaign with reversed I_p, B_T at 5.4 T, 0.8 MA.
As expected, L-H thresholds increase with B_T

- **Total power thresholds** for L-H transition are 2.7-5 MW for 8 T, vs typically 1-2 MW for 5.4 T.

- **Edge T_e** is also substantially higher at transition, ~300-450 eV vs 100-200 eV.
 - Higher edge T_e, lower ν^* at L-H transition likely affects the n-T trajectory of the following high field H-modes.
Extended scalings confirm pedestal widths are insensitive to B_T, I_p.

- Bulk of pressure width data \sim2-5 mm over 2.6-8 T, 0.4-1.7 MA.
 - Rules out ρ_{pol}, ρ_{tor} scalings of pedestal width.

- Exception is at lowest I_p (and n_{ped}) where Δ increases.
 - Correlated with deeper neutral penetration depth L_D and may represent a fueling effect as on lower n devices.
High B H-modes have same pedestal pressure as lower field cases, but higher T_{ped}

- **At given I_p, pressure pedestal profiles are independent of B**, ie. $\alpha_{\text{MHD}} \sim \text{const.}$ (even though most discharges do not have evident MHD).
- Stored energy, τ_E are also the same, since profiles remain “stiff”.
- **Balance between T, n shifts.**
 - High T_e at L-H may contribute.

\[
\begin{align*}
\text{Density Pedestal} (10^{20} \text{ m}^{-3}) & \quad \text{vs} \quad T_e \text{ pedestal (eV)} \\
0 & \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\
5.4T, 1.2 \text{ MA} & \quad 7.9T, 1.2 \text{ MA} \\
\end{align*}
\]

\[
\begin{align*}
\text{High B n}_{\text{ped}} \text{ lower} & \quad \text{T}_{\text{ped}} \text{ higher} \\
p_e(r) \sim \text{same} \\
\end{align*}
\]
Higher B discharges therefore have lower ν^{*}_{ped}

- 7.9 T H-modes tend to be shorter, with n_e rising.
- Most to date are ELM-free, not EDA.
 - These cases had lower ν^* and/or lower α_{MHD} than typical EDA.
- Some discharges at high α, q_{95} had weak quasi-coherent modes, but not steady n_e.
 - These have low ν^* but higher α_{MHD}, continuing prior trends and extending EDA operation space.

ν^{*}_{ped} computed taking $Z_{\text{eff}}=1$, lower bound
n_{ped} is still linked to current. But, at high B, scales better with q_{95}.
n\textsubscript{ped} is still linked to current.
But, at high B, scales better with q\textsubscript{95}.

The key result in all B ranges is that for high n and strong transport barriers, **n\textsubscript{ped} is not an easily controlled independent variable**.

- Largely determined by target plasma n, I, B.
- Target n is constrained when available power is near P\textsubscript{thresh}.
- Low gas fueling efficiency, related to opaque SOL.
- Transport sets n\textsubscript{e} gradient.
- **Potential issues for ITER H-mode scenarios.**
Influence of Magnetic Field Direction and Configuration
SOL flows appear linked to the changes in L-H threshold with configuration

- Well-known that L-H power threshold is \(\sim 2x \) HIGHER with \(B_x \nabla B \) drift away from active x-point. \(T_{\text{edge}} \) is also higher.

- Prior C-Mod experiments found strong parallel flows in inner SOL, reversing with USN vs LSN configuration. These affect core toroidal rotation \(V_{\text{tor}}(0) \).

- In unfavorable (USN) case, starts with more counter-current rotation, apparently further from L-H threshold conditions.
 - In all cases, flows and \(V_{\text{tor}} \) increment co-current with increasing power and pressure. \(\text{(no ext torque)} \)

- L-H transition occurs at similar rotation values in each case, but requires more power in USN than LSN.
 - Likely linked to differences in \(E_r \), shear.

Results consistent with SOL flows causing the differences in \(P_{\text{thresh}} \) with configuration (not necessarily the transition itself).
Reversing B and \(I_p \) removes ambiguities in comparing different magnetic configurations.

C-Mod has only one (lower) “divertor” structure. This means:

- Upper tile configuration is more open than lower, not designed for high heat flux.
- LSN and USN shapes were not exactly symmetric.

Do these effects contribute to the observed differences in SOL, flows/rotation, profiles, threshold?

To find out, reversed I and B to compare in SAME configuration:

“Reverse B” has ion \(B \times \nabla B \) drift **upward**.

“Normal B” has drift **downward**.
Key results confirmed by field reversal:
Inner SOL flows are unaffected by I, B direction

Parallel Flow in High-Field Side SOL
2 mm outside separatrix

- Flow direction depends only on X-point location, NOT Bx∇B.
 Consistent with transport-driven flux. Similar Mach No. in forward, reversed B.

Details in LaBombard talk JO1/4 Tues pm.
Key results confirmed by field reversal:

Inner SOL flows are unaffected by I, B direction

- Flow direction depends only on X-point location, NOT Bx∇B. Consistent with transport-driven flux. Similar Mach No. in forward, reversed B.

- But, since I_p is also reversed, flows are *counter*-I_p when Bx∇B is away from the X-point (‘unfavorable’), *co-*I_p in favorable cases.

Details in LaBombard talk JO1/4 Tues pm.
Key results confirmed by field reversal:
L-H Thresholds higher in Reversed B LSN

- **Ohmic core rotation is more counter-\(I_p\) in reversed field LSN.**
 - \(I_p\) increment when power, pressure increase.

- **LSN power thresholds** are much higher (2.7-3.7 MW) - “unfavorable”
 - Usual variability with wall conditions.

- **Threshold temperatures and gradients are also much higher** (>400 eV), particularly near low \(n_e\) limit.
 - Limit varies between campaigns.
Edge $T_e(r)$ with unfavorable drift shows interesting evolution before L-H transition

- Edge T_e profiles evolve on a slow time scale, $3-4 \tau_E$.
- Often a “break-in-slope” in $T_e(t)$, $\nabla T \sim 40$ ms before L-H.
 - Two-phase H-mode transition?
- Steep T_e gradients develop, before changes in ∇n_e & D_α (the classic “L-H”) transition.

- $V_{tor}(0)$ steadily reduces.
 - Smaller change in edge V_{pol}.

- Stored energy W, H-factor also increase gradually, H_{89P} to 1.6 in L-mode.

- This L-mode evolution is NOT seen in favorable drift direction, even with high L-H thresholds (eg, 8 T).
- It is similar to behavior seen in AUG ‘Improved L-mode’ with unfavorable drifts. (Ryter, PPCF 1998).

![Graph showing various plasma parameters during ICRF on, P=3.4 MW](image-url)
“Pedestal” in T_e develops prior to L-H transition

- T_e, p_e gradients develop before L-H over a narrower region (~2 mm) than in later H-mode.
 - $\nabla p_e/n_e$ up to 200 keV/m!

- Preliminary measurements from ambient B$^{+4}$ spectroscopy near top of pedestal indicate that total E_r does not change substantially until the L-H transition.
 - However, do not resolve the region of steepest ∇T_e.

CX details in Bespamyatnov, QP1/56, McDermott QP1/57 Wed pm
Steady decrease in edge χ_{eff} is accompanied by changes in turbulent fluctuations

- Gradual decrease in magnetic fluctuations at outboard side, strongest in ~50-100 kHz band, accompanies 60% drop in edge χ_{eff} from power balance. Also a broadening, fluctuation increase at $f>150$ kHz;
 - Net decrease in integrated \tilde{B} (5-250 kHz) during evolution is ~46%
 - Upshift but little change in net n_e fluctuations by PCI (top view).
- Further sharp decreases in all fluctuations, and in χ_{eff}, at L-H transition.

\[\chi_{\text{eff}} = \frac{P_{\text{cond}}}{2kn_e\nabla T_{\text{eff}}} \]

0.97 $< \psi < 1.0$
Pre-LH evolution is consistent with a “soft” transition

- Edge flux-gradient plot shows gradual increase in ∇T with near-constant Q, n_e, after ‘break-in-slope’,
 - Appears to be a ‘soft’, second order transition, as would result from $-$ve dependence of χ on T or ∇T.
 - Contrasts with L-H transition, which is a rapid first order bifurcation.
 - Consistent with the gradual decrease in turbulence.
- Regime may help identify which modes contribute to edge transport.
- Transport phenomenon has globally similar features to the ‘Intermediate Mode’ regime seen on DIII-D but no evidence of “bursty” fluctuations or fluxes. (Colchin, PRL 2002).

- More similar to ‘Improved L-mode’ on AUG with unfavorable drifts.
- Regime might be attractive as starting point for advanced scenarios: $H \sim 1.6$, but low density.
H-mode pedestals in unfavorable configuration have lower n_{ped}, ν^*

- In fully developed H-mode, pedestals in Reverse B LSN (unfavorable drift) tend to have lower n, higher T (up to 900 eV) than Forward B LSN with similar I, B, target n_e. Pedestal widths, pressures are similar.
 - This leads to lower collisionality pedestals, $0.25 < \nu^*_{\text{ped}} < 2.5$

- Dimensionless pedestal space (α_{MHD} vs ν^*_{ped}) is quite similar to Forward B 8 T H-modes. Common feature in both cases is a high power and temperature (lower ν^*) at the L-H threshold. Is the initial condition determining the final operating point?

Pedestal details in Hughes QP1/44 Wed pm
QC Mode details in Cziegler talk JO1/7 Tues pm, Lin QP1/63.
Summary: H-mode studies over expanded operating space on Alcator C-Mod

- C-Mod H-modes studies have been extended to high field (7.9 T) and to reversed (unfavorable) field and current direction.
- In both cases, power and edge T_e H-mode thresholds are increased.
 - Pedestal widths, pressure limits, confinement ~ same.

- With strong barrier and opaque SOL, pedestal density is largely set by target I, B, n. Target n is constrained when P_{thresh} high. *ITER may well be similar in these regards.* Parameters at the L-H threshold affect the final H-mode.
 - T_{ped} is higher and n_{ped} lower at high B and Reversed B. \Rightarrow Lower ν^*.

- Reversed field results are consistent with SOL flows affecting threshold.
- In unfavorable case, strong gradients in T_e develop well before L-H transition in particle confinement. Gradual decrease in χ is accompanied by changes in fluctuations.
 - Regime of interest for edge transport physics, and perhaps for future use in advanced scenarios.

- 2007 experiments will exploit new cryopump to expand low ν^* operation, and extend high field H-modes to higher I_p and P_{RF}.