High Density Scrape-Off-Layer Absorption of Lower Hybrid Waves on the Alcator C-Mod Tokamak
I. Faust1, G.M. Wallace1, M.L. Reinke1, R.R. Parker1, O. Meneghini2, A.E. Schmidt1, S. Shiraiwa1, J.R. Wilson2
1MIT Plasma Science and Fusion Center 2Princeton Plasma Physics Laboratory

Abstract
The goal of the LHCD system on Alcator C-Mod is to investigate current profile control under plasma conditions relevant to burning plasma experiments. Bremstrahlung from fast electrons in the core plasma drops suddenly at a density below the density limit previously observed on other tokamaks ($\omega_c/\omega_{ce} \sim 2$). Electric currents in the SOL between the inner and outer divertors increase across the same density range that the core bremsstrahlung emission drops while SOL Lyman-α emissivity profiles shift outward, indicating absorption of LH waves in the SOL. The experimental x-ray data are compared to a ray tracing/Fokker-Planck model including collisional absorption in the SOL, which shows good agreement with the experiment across a wide range of densities.

High Density LH Operation[1]
- Above densities $n_e \sim 1 \times 10^{20} \text{m}^{-3}$, HXR emission significantly drops with applied LH power.
- LH induced changes in loop voltage (ΔV), diminish at higher density (indicating loss of current drive).
- HXR count rate decays at a rate faster than $\sim n^{-1}$.[1]
- HXR reduction not dependent on N_1.
- Parametric Decay is not cause of loss ($\omega_{ce}/\omega < 3$).
- CQL3D/GENRAY codes better predict density dependence with addition of SOL

4.6 GHz Lower Hybrid System
The Lower Hybrid Current Drive (LHCD) system on Alcator C-Mod preferentially excites the lower hybrid slow wave. The launched spectrum is determined by the phased-waveguide array phasing.[3] Wave coupling is maximized with a minimum distance to the plasma LCFS, minimizing the cutoff region. The old launch system was capable of ~ 1.2 MW net power for 500 ms, with an N_1 from 1.5-3.5. [New Launcher - See J.R. Wilson PO4.00003]

Lyman-α Emission Indicates Wave Absorption of LH in the SOL
- Lyman-α emissivity profile shifts outward radially with applied LH power in high density (shift into the SOL).
- Increased emissivity is also seen in higher density cases.
- Increase in emission and shift is indicative of increase of ionization in SOL.
- Emissivity profile shift is power dependent at high density.
- Increased emissivity is seen on fieldlines not tied to the launcher.

Lyman-α Measures SOL Ionization
- Detects the n=2 \rightarrow 1 D transition (121.6 nm) light.
- Uses pinhole-collimated AXUV diodes and bandpass filters.[4]
- Linear diode array resolves spatial Ly-α intensity.

4.6 GHz Lower Hybrid System
The Lower Hybrid Current Drive (LHCD) system on Alcator C-Mod preferentially excites the lower hybrid slow wave. The launched spectrum is determined by the phased-waveguide array phasing.[3] Wave coupling is maximized with a minimum distance to the plasma LCFS, minimizing the cutoff region. The old launch system was capable of ~ 1.2 MW net power for 500 ms, with an N_1 from 1.5-3.5. [New Launcher - See J.R. Wilson PO4.00003]

References

Conclusions and Future Work
- Lyman-α emissivity profile is modified during high density LH discharges.
- Results indicate that collisional absorption is ionizing the SOL.
- SOL currents arise from enhanced density in the SOL during high density LH discharges.
- Current drive efficiency drops with the onset of SOL phenomena.
- SOL absorption profile will be elucidated with planned experiments.

This work supported by the US DOE awards DE-FG02-99ER54512 and DE-AC02-76CH03110/73