Poloidal variation of Ar$^{17+}$ impurity density in Alcator C-Mod

M.L. Reinke, I.H. Hutchinson, J.E. Rice and J.L. Terry
MIT Plasma Science and Fusion Center

APS-DPP Meeting. Chicago, IL.
11/10/2010

OVERVIEW

- background/motivation
- diagnostic description and example profiles
- qualitative comparison to neoclassical theory
Motivation

Tokamaks have routinely observed that n_z can be up/down asymmetric on a flux surface on the order of inverse aspect ratio, ϵ

Alcator-A, PLT, PDX, ASDEX, JET, Compass-C, Phaedrus-T, Alcator C-Mod, TdeV

While ion-impurity friction has been shown to play a role in this asymmetry, a complete theory of neoclassical parallel impurity momentum balance has not been experimentally verified

A quantitative understanding of parallel impurity transport is important for:

- calculating main ion velocities from impurity measurements
- deducing local data from line-integrated measurements
- calculating the neoclassical $<\Gamma_{z,r}>$ where applicable

Here we discuss measurements of the up/down asymmetry of Ar^{17+} line emission as part of a wider investigation of parallel n_z transport

Parallel Momentum Balancea,b

\[n_z e \nabla \parallel \Phi_1 + T_i \nabla \parallel n_z = R_z, \parallel \]

poloidal variation of ion-impurity friction can sustain a density gradient along the field

\[\frac{n_z}{\langle n_z \rangle} = 1 + n_c \cos(\theta) + n_s \sin(\theta) \]

solving this equation in the circular, $\epsilon \ll 1$ limit gives

1^{st} order up/down (n_s) and in/out (n_c) asymmetries

\[n_s = \frac{2 \epsilon g}{1 + (1 + \gamma)^2 g} \]
\[n_c = \frac{2 \epsilon (1 + \gamma) g^2}{1 + (1 + \gamma)^2 g^2} \]

radial gradients drive the asymmetry differently depending on the main-ion collisionality, with

\[\gamma \sim L_{\perp,n} / L_{\perp,T} \]

\[g_B = - \frac{Z^2 m_i I(\psi)}{\tau_{ii} \langle B \cdot \nabla \theta \rangle} \left(\frac{d \ln(p_i)}{d \psi} - \frac{3}{2} \frac{d \ln(T_i)}{d \psi} \right) \]
\[g_{PS} = - \frac{Z^2 m_i I(\psi)}{\tau_{ii} \langle B \cdot \nabla \theta \rangle} \left(\frac{d \ln(n_i)}{d \psi} \right) \]

aP. Helander, PoP 5 3999 (1998) \quad bT. Fülöp, P. Helander, PoP 8 3305 (2001)
Ar^{17+} From X-Ray Spectroscopy

- spherical crystal spectrometer allows imaging of full plasma profile
- measure the 1s^2-1s2s “forbidden line” in He-like Ar
- for large r_i/a where \(T_e \ll E_\gamma \) recombination populates the 2s state
- line emissivity \(\sim \) H-like Ar density (Ar^{17+})

viewing geometry averages over \(n_c \) term and comparison of chords above and below the midplane give \(n_s \)

Up/Down Symmetric in Core

- brightness profiles plotted vs. normalized tangency radius
- profiles are shown to be symmetric inside of $r_t/a \sim 0.6$
- n_e scanned at fixed shape $I_p = 800$ [kA], $B_t=5.4$ [T]

$\overline{n_e} \sim 1.2 \times 10^{20}$ [m$^{-3}$]

$\overline{n_e} \sim 0.8 \times 10^{20}$

$\overline{n_e} \sim 0.3 \times 10^{20}$
Up/Down Symmetric in Core

- brightness profiles plotted vs. normalized tangency radius
- profiles are shown to be symmetric inside of $r_t/a \sim 0.6$
- n_e scanned at fixed shape \(I_p = 800 \text{ [kA]}, B_t = 5.4 \text{ [T]} \)

Zoom in on profiles in the outer $\frac{1}{4}$ of of plasmas

\[\bar{n}_e \sim 1.2 \times 10^{20} [\text{m}^{-3}] \]

\[\bar{n}_e \sim 0.8 \times 10^{20} \]

\[\bar{n}_e \sim 0.3 \times 10^{20} \]
Asymmetric Near the Edge

- brightness profiles plotted vs. normalized tangency radius, \(r_t/a \)
- profiles are shown to be symmetric inside of \(r_t/a \sim 0.6 \)
- \(n_e \) scanned at fixed shape with \(I_p = 800 \, [kA] \), \(B_t = 5.4 \, [T] \)
- up/down brightness ratio decreases and even inverts as \(n_e \) drops

characterize the up/down brightness ratio at \(r_t/a = 0.85 \)
vs. Ohmic plasma parameters
Ratio Varies With Density

ratio vs. n_e at fixed I_p for various magnetic configurations

- region of strong n_e dependence
- independence of active x-point
- ratio reversal with ∇B drift direction

asymmetry direction consistent with theory for PS main ions

M.L Reinke
11/10/2010 APS-DPP Meeting. Chicago, IL
Ratio Varies With Density

ratio vs. n_e at fixed I_p for various magnetic configurations

- region of strong n_e dependence
- independence of active x-point
- ratio reversal with ∇B drift direction

NEW OBSERVATIONS
- ratio reverses at low density

![Graph showing ratio vs. n_e at fixed I_p for various magnetic configurations.](image)

Ratio Varies With Density

- LSN ∇B down
- USN ∇B down
- USN ∇B up

Graph Details:
- Ratio at $r/a = 0.85$
- All at $I_p = 0.8$ MA
- n_e range: 10^{20} m^{-3}
- Brightness Ratio (up/down)
Ratio Varies With Density

ratio vs. n_e at fixed I_p for various magnetic configurations

- region of strong n_e dependance
- independence of active x-point
- ratio reversal with \(\nabla B \) drift direction
- **NEW OBSERVATIONS**
 - ratio reverses at low density
 - ratio eventually loses n_e correlation

Chart:
- LSN \(\nabla B \) ↓
- USN \(\nabla B \) ↓
- USN \(\nabla B \) ↑
- ratio at \(r_t/a = 0.85 \)
- all @ \(I_p = 0.8 \) MA

Graph:
- Brightness Ratio (up/down) vs. \(\bar{n}_e \) [10^{20} m^{-3}]
- Data points indicate ratio varies with density.
Ratio Reversal Linked to ν^*

reversal of up/down asymmetry observed primarily for small ν^*

- for high collisionality theory predicts $n_{s,PS}$ reversal **only** for change in ∇B drift direction
- at lower collisionality, $n_{s,B}$ is allowed to change sign depending on T_i and n_i gradient scale lengths

\[n_{s,B} \sim \left(\frac{d \ln(p_i)}{d \psi} - \frac{3}{2} \frac{d \ln(T_i)}{d \psi} \right) \]

\[n_{s,PS} \sim \left(\frac{d \ln(n_i)}{d \psi} \right) \]
Inverse I_p Dependence Observed

LSN, Ohmic plasmas shows inverse scaling with plasma current

in contrast, Fülöp, Helander and earlier theoriesa,b predict a $\sim I_p^{-2}$ scaling

to be consistent with theory other parameters in n_s must vary like I_p

aK. Brau, et al. Nucl. Fusion. 23 1657 (1983) \hspace{2cm} bK. B. Burrell, et al. Nucl. Fusion. 19 1571 (1979)
Summary

- Diagnostic upgrades have allowed for extended analysis of the observed poloidal asymmetry of Ar$^{17+}$ density on Alcator C-Mod.
- Brightness profiles shown to be up/down asymmetric at $r_t/a \sim 0.85$ and sensitive to n_e and ∇B drift direction, consistent with previous observations.
- The brightness ratio is shown to reverse at low density ($v^* < 1$) which theory predicts only for collisionless main ions.
- The brightness ratio observed to vary like $1/I_p$ in contrast to theories with explicit $\sim 1/I_p^2$ dependance.

Future work will make use of the local $T_z(r)$ and $v_z(r)$ measurements for quantitative comparisons to neoclassical theories of parallel impurity transport.