Reduced-model (SOLT) simulations of an EDA H-mode shot at Alcator C-Mod

D.A. Russell, D.A. D’Ippolito and J.R. Myra
Lodestar Research Corporation
B. LaBombard and J.L. Terry
Plasma Sciences and Fusion Center, MIT
S.J. Zweben
Princeton Plasma Physics Laboratory

Work supported by USDOE Grant No. DE-FG02-97ER54392, USDOE Contract No. DE-AC02-09CH11466, USDOE Cooperative Agreement No. DE-FC02-99ER54512 and PPPL Subcontract No. S009625-F.
Scrape-Off-Layer Turbulence (SOLT) Code

- Electrostatic Fluid Model, 2D \(\perp \) to B in OM
- Sheath Physics (closure relations)
- \(O(1) \) Turbulent Fluctuations \((n_e, T_e, \phi) \)
 Blobs, EDWs, profile modification
- Mean Poloidal Flows \(\langle v_y \rangle \)
 momentum conservation, sheath physics and viscosity

This Talk

- parallel heat flux: \(q_{\parallel}(\Delta r) \) & SOL width (original motivation)
- quasi-coherent spectral features (surprise!)
SOL width decreased with increasing power (T_e) in the experiment.

\[q/\Delta r \sim \exp(-\lambda \Delta r) \]

Shot #1100303018 sampled at 2 times:

- $t = 1.05$ sec: $P_{\text{CMOD}} = 1.8$ MW, $\lambda_{\text{CMOD}} = 1.3$ mm
- $t = 1.41$ sec: $P_{\text{CMOD}} = 1.4$ MW, $\lambda_{\text{CMOD}} = 2.3$ mm

How we explore this scaling with SOLT:

- Given n_e and T_e profiles for C-Mod at each time, we adjust the mean flow in SOLT until P_{SOLT} agrees with P_{CMOD} at each time.
- We analyze $q/\Delta r$ in each of these 2 power-matched simulations.
Inside the SEP ($\Delta r < 0$), we damp SOLT n_e and T_e to the C-Mod profiles.

Inside the SEP, we damp the mean poloidal flow $\langle v_y \rangle$ to a reference flow (v_{y0}) derived from the C-Mod profiles.

Reference flow ($\Delta r < 0$):
\[e Z n_i E_r - \partial_r (n_i T_i) = 0 \]
\[\Rightarrow E \times B \text{ drift:} \]
\[v_{y0} = -\tau \cdot \partial_r (n_e T_e)/n_e, \tau \sim T_i/T_e \]

τ controls the turbulence e.g. Power \rightarrow SOL
Scaling of SOL width (λ) with Power (P)

- Tune τ so that SOLT’s Power \rightarrow SOL matches C-Mod’s e.g. at the earlier time slice:

At power-matching for the two time slices, the same trend is observed:

λ increases with decreasing power & T_e in experiment and simulation.
Parallel heat flux is limited by collisions in the near-SOL

\[q_{\parallel} = 1/q_{FL} + 1/q_{SL} + 1/q_{CL} \]

parallel heat flux regimes

- flux - limited:
 \[q_{FL} = C_{FL} n_e v_e T_e \sim T_e^{3/2} \]

- sheath - limited:
 \[q_{SL} = s_E n_e c_s T_e \exp[e(\Phi_B - \Phi)/T_e] \sim T_e^{3/2} \]

- collision - limited:
 \[q_{CL} = 3.2 n_e c_s T_e / \Lambda, \Lambda = v_e L_{\parallel} / \Omega_i p_s \sim T_e^{7/2} \]

\(q_{CL} \) acts as the *bottleneck* in the near-SOL, limiting parallel transport and so increasing the SOL width, most effectively with decreasing \(T_e \).
A string of blobs, radially-localized about a maximum of the mean flow just inside the separatrix (blob birth zone), intermittently emitting plasma into the SOL.

- **C-Mod’s QCM**: $\nu \sim 100$ kHz, $k_y \sim 1.5$ cm$^{-1}$
QCM dispersion is unambiguous in the birth zone.

But other modes emerge in the near-SOL.
Linear Analysis of Time-Averaged Profiles suggests an underlying transport dynamics

- drift-interchange mode
- blob birth zone
- straddles (±) flow regions
- blob emission
- sheath mode
- blob graveyard

\(\gamma (\text{MHz}) \)

\(k_y \text{ (cm}^{-1}) \)

\(\Delta r \text{ (mm)} \)

\(\langle v_y \rangle \)

\(|\delta \phi|^2 \)

\(k_y = 2.66 \text{ cm}^{-1} \)

\(k_y = 0.8 \text{ cm}^{-1} \)
What is the origin of the cascade barrier at $k_y \approx 1 \text{ cm}^{-1}$?

The peak in the energy spectrum does not correspond to the peak in the linear growth rate, in this or in the much richer (3D, B-field geometry, ballooning modes, etc.) linear analysis by Jim Myra at al. (next talk)

Why does the energy collect at $k_y \sim 1 \text{ cm}^{-1}$ in SOLT’s QCM?
Part 1
Scaling of the SOL width for parallel heat flow

• We power-matched SOLT simulations to a C-Mod EDA H-mode shot by adjusting the mean flow in the simulations.
• We recovered the observed SOL($q_{||}$) width scaling with T_e.
• $q_{||}$ is limited by collisions in the near-SOL: $q_{||, CL} \sim T_e^{7/2}$
 ➢ consistent with T_e dependence observed for this shot
 ➢ differs from a similar SOLT study of NSTX (sheath-limited) scaling

Part 2
SOLT’s Quasi-Coherent Mode

• consists of a string of blobs, moving with the mean flow in the edge,
 ➢ centered in the birth zone, where the flow shear rate ≈ 0.
 ➢ Dispersion is set by the birth-zone flow (Doppler) and broadcast into the near-SOL.
 ➢ $\sim \frac{1}{2}$ of the net particle flux comes from the QC mode.
 ➢ Linear unstable modes (D-I, K-H) may drive transport in the saturated state.
 ➢ $|\delta n(k_y)|^2$ peaks at $k_y > 0$. Why? What is the origin of this nonlinear mode?
 No edge-localized, unstable linear eigenmode drives this peak directly.
 See J.R. Myra et al. – next talk.