Investigation of Impurity Transport in Alcator C-Mod Using Laser Blow-Off Impurity Injection

M.A. Chilenski, M. Greenwald, N.T. Howard, I.L. Delgado-Aparicio, I. Faust, M.L. Reinke, A.E. White

Abstract

Alcator C-Mod is equipped with a multi-pulse laser blow-off impurity injector, capable of injecting a small amount of a given impurity into the plasma as frequently as once every 90 s. This system is used as an actuator for studies of impurity transport, where calcium is often used as a non-intrinsic and non-recycling. To observe the effect of the injection, a high-resolution x-ray imaging crystal spectrometer captures temporally-resolved profiles of the emission fromholmium-like calcium. These emission profiles can then be analyzed to obtain temporally-resolved profiles of the impurity diffusivity and convective pinch velocity. Injections have been performed in a variety of plasmas including L-modes, H-modes, L-modes and plasmas with high fractions of lower hybrid current drive. C-Mod’s combination of an impurity injector with a high-resolution x-ray spectrometer provides a powerful system for probing the behavior of impurity transport in these various regimes.

Multi-pulse laser blow-off impurity injector; controlled introduction of impurities

Controlled impurity injections are a very powerful tool to probe transport
• Small (non-inertial) injections of a non-intrinsic, non-recycling impurity (such as calcium) enables systematic study of impurity transport [1, 2].

Hardware overview
• Motorized steering for between-shot positioning.
• Periodic steering for ion shot movement of beam.
• Fast steering and 10 Hz laser repetition rate enables multiple injections into a shot.

Impurity transport coefficient profiles have been successfully measured for L-mode plasmas

A variety of diagnostics track the injection
• An x-ray imaging crystal spectrometer observes emission profiles from high charge states
 - Calcium is typically injected: non-intrinsic and non-recycling.
 - The spectrometer can be configured to view emission from either Ca XIX or Ca XX.
 - 32 spatial channels, up to 6 ms time resolution.
 - Combining the data from multiple injections at 10 Hz enables an effective time resolution of 2 ms.

Preliminary look at the effect of LHCD

A scan of LHCD power was used to vary the loop voltage and suppress sawteeth
• Used USN plasmas with both forward and reverse field.
• At sufficiently high non-inductive current drive fraction, the sawteeth are stabilized.
• Ca XVII and Ca XIX (not shown) confinement times show little change across this threshold in either field configuration.
• This is somewhat surprising given the observed connection between the shape of the impurity transport coefficient profiles and the sawtooth inversion radius in C-Mod [1]. As well as the observed effects of sawteeth on the impurity density profiles both in these discharges and on other machines [7], this seems to imply that the sawtooth pinch (\(P_{\text{t}} = V_{\text{S}}/V_{\text{ah}}\)) is negligible.
• Further work is required to obtain emissivity and transport coefficient profiles and look for other effects related to the suppression of the sawteeth.

Future Work

Detailed analysis of LHCD scan
• Extract transport coefficient profiles using STRAHL [4].
• Compare sawtoothing and sawtooth-suppressed plasmas to look for changes in the transport coefficient profiles once sawteeth are no longer present.

Detailed analysis of EDA H-mode scan
• Obtain more accurate values for \(\nu_{\text{eff}}\).
• Investigate relationship between changes in the impurity transport and peaking of the main ion density.

Detailed analysis of I-mode scan: Investigate changes in fluctuation and transport coefficient profiles across the L/I threshold.

A broad range of EDA H-mode conditions have been explored

A current/power scan was used to access a wide range of \(\nu_{\text{eff}}\)
• Density peaking in H-modes has been observed [8] to scale with
 \[\nu_{\text{eff}} = 1.2 Z_{\text{eff}} (n_{\text{ei}}/T_{e})^{1/2}\]
• A scan of \(P_{\text{ICRF}}\) and \(P_{\text{LHCD}}\) was used to study \(\nu_{\text{eff}}\)
• Ca was injected into the plasmas in order to look for a connection to the main ion particle transport.

Initial analysis of global confinement results shows dependencies on \(\nu_{\text{eff}}\)

More work is needed to explain the outliers and look at the behavior of the impurity density and transport coefficient profiles.

References

Acknowledgements

Work on C-Mod supported by US DOE contract DE-FC02-99ER54512.
Work at LLNL performed under US DOE contract DE-AC52-07NA27344.

This research is supported in part by the Department of Energy Office of Science Graduate Research Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract number DE-AC05-06OR23100.