Poloidal Structure of Impurity Density and Flows in the Pedestal Region of Alcator C-Mod

R.M Churchill
B. Lipschultz, I. Hutchinson, C. Theiler, M.L Reinke, and the Alcator C-Mod team

Special Thanks:
D. Whyte, J.W. Hughes, D. Ernst
T. Pütterich, E. Viezzer,
S. Lisgo, D. Stotler
Outline

- HFS Parallel Flow Discrepancy

- Gas Puff-CXRS Diagnostic

- In-Out Impurity Density Comparisons

- Explanations for Impurity Asymmetries

Prior observations
Measuring n_z, T_z, and V_z at the LFS and HFS
Results in L-, I-, and H-mode
Possible mechanisms driving asymmetries
Outline

HFS Parallel Flow Discrepancy

Gas Puff-CXRS Diagnostic

In-Out Impurity Density Comparisons

Explanations for Impurity Asymmetries

Prior observations

Measuring n_z, T_z, and V_z at the LFS and HFS

Results in L-, I-, and H-mode

Possible mechanisms driving asymmetries
Inferred Parallel HFS Flow Overpredicts Measurements by >3x

- $V_{z,\parallel,HFS}$ calculated[1] from LFS flow measurements and general flow eqn
 \[V_z = \frac{k_z(\psi)}{n_z} B + \omega_z(\psi) R \hat{\phi} \]
 - Assumed $n_z \approx n_z(\psi)$

- Discrepancy also observed on ASDEX Upgrade[2]

Inferred Parallel HFS Flow Overpredicts Measurements by >3x

- $V_{z,\parallel,\text{HFS}}$ calculated\([1]\) from LFS flow measurements and general flow eqn
 - Assumed $n_z \approx n_z(\psi)$
- Discrepancy also observed on ASDEX Upgrade\([2]\)

$V_z = \frac{k_z(\psi)}{n_z} B + \omega_z(\psi) R\phi$

Valid in Pedestal?
- Sources?
- Radial transport?

Poloidally varying n_z?

Churchill/APS 2013
HFS Parallel Flow Discrepancy

Gas Puff-CXRS Diagnostic

In-Out Impurity Density Comparisons

Prior observations

Measuring n_z, T_z, and V_z at the LFS and HFS

Results in L-, I-, and H-mode

Possible mechanisms driving asymmetries

Explanations for Impurity Asymmetries
Gas Puff CXRS System on Alcator C-Mod

- Diagnostic expanded:
 - LFS and HFS gas puffs
 - Poloidal and Parallel views

- New diagnostic technique developed to measure impurity density using Gas Puff-CXRS [3]

Complete set of LFS and HFS measurements of n_z, T_z, $V_{z\theta}$, $V_{z//}$, E_r

HFS Parallel Flow Discrepancy

Gas Puff-CXRS Diagnostic

In-Out Impurity Density Comparisons

Prior observations

Measuring n_z, T_z, and V_z at the LFS and HFS

Results in L-, I-, and H-mode

Possible mechanisms driving asymmetries

Explanations for Impurity Asymmetries
In-Out Boron Density Asymmetry in H-mode, absent in L- and I-mode

No asymmetry in plasmas with low ∇n_e (L-mode, I-mode)

<table>
<thead>
<tr>
<th></th>
<th>n_e Pedestal</th>
<th>T_e Pedestal</th>
<th>n_z Asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-mode</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>I-mode</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>H-mode</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Churchill/APS 2013
In-Out Boron Density Asymmetry in H-mode, absent in L- and I-mode

H-mode

Peak asymmetry (>10) is larger than maximum allowed by conventional neoclassical theory (~4) [4,5]

<table>
<thead>
<tr>
<th></th>
<th>(n_e) Pedestal</th>
<th>(T_e) Pedestal</th>
<th>(n_z) Asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-mode</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>I-mode</td>
<td>\xmark</td>
<td>\checkmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>H-mode</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

Conventional Neoclassical Transport Can’t Explain LFS Midplane Impurity Density

- Simulated, 1D radial impurity transport with neoclassical transport coefficients predicts impurity density profiles close to measured C-Mod HFS n_{B5^+}.

- In contrast to ASDEX-U, where “conventional” ($\rho_{\theta,i} << L_{ni}, L_{Ti}$) neoclassical transport reproduces LFS impurity density profiles [6].

Churchill/APS 2013
Inboard n_z Pedestal Fixed
Outboard n_z Pedestal Varies

- In-out $n_{B_{5+}}$ asymmetry in H-mode increases with q_{95}
 - LFS $n_{B_{5+}}$ pedestal shifts inwards and widens
 - HFS $n_{B_{5+}}$ pedestal remains \simfixed in position and width

Churchill/APS 2013
Outline

HFS Parallel Flow Discrepancy

Gas Puff-CXRS Diagnostic

In-Out Impurity Density Comparisons

Explanations for Impurity Asymmetries

Prior observations

Measuring n_z, T_z, and V_z at the LFS and HFS

Results in L-, I-, and H-mode

Possible mechanisms driving asymmetries
Fluctuations Driving Asymmetry?

- Poloidally asymmetric radial transport a candidate for \(n_{B5+} \) asymmetry

- Quasi-coherent (QC) mode in EDA H-mode
 - Bad curvature driven (LFS only)
 - Measured \(\langle \tilde{E}_\theta \tilde{n}_e \rangle \) directed outward [7]

- ELM-free H-mode shows:
 - No coherent mode
 - Reduction in \(\tilde{n} \) fluctuation power

Figure from I. Cziegler, PoP, 2010

but \(n_{B5+} \) asymmetry still present!

Suggestive that other physics at play...
Radial Transport Can Become Important in the Pedestal

- Radial transport time can be comparable to or faster than parallel transport time in H-mode

- Non-local neoclassical calculations (PERFECT) show radial transport important in the pedestal [8]

- Large radial transport will break $k_z(\psi)$, $\omega_z(\psi)$ flux functions

$$V_z = \frac{k_z(\psi)}{n_z} B + \omega_z(\psi) R \dot{\phi}$$

Test experimentally

Density Asymmetry Compared to that Predicted by Poloidal Velocity

- Poloidal velocities **underpredict** impurity density asymmetry

\[n_{z,HFS} = \frac{B_\theta}{V_\theta} |_{HFS} \quad \frac{V_\theta n_z}{B_\theta} |_{LFS} \]

\[V_{\theta,HFS} = \frac{B_\theta}{n_z} |_{HFS} \quad \frac{V_\theta n_z}{B_\theta} |_{LFS} \]

Radial transport important

Churchill/APS 2013
Conclusions

- Direct **boron density** measurements demonstrate:
 - Impurity density *symmetric* in low n_e gradient plasmas (L- and I-mode)
 - Impurity density *asymmetric* in H-modes
 - Peak asymmetry (>10) larger than allowed by conventional neoclassical theory (~4)
 - LFS pedestal shifts inwards and widens as Ip ↓
- Fluctuation driven transport low in ELM-free H-modes
 - Suggestive that other physics driving impurity density asymmetry
- Gradient driven, collisional radial transport appears to be primary driver in the impurity density asymmetry
 - Supported by breaking of flux functions $k(\psi), \omega(\psi)$
End Presentation
H-mode Flux Functions

- Measured $k_Z(\psi)$ and $\omega_Z(\psi)$ at the LFS and HFS
 - Reasonable in magnitude
 - Shift present

$$k_Z(\psi) = \frac{n_Z}{B_\theta} V_{Z\theta}$$

$$\omega_Z(\psi) = \frac{1}{\cos \gamma} V_{Z/\|} - V_{Z\theta} \left[\frac{\sin \gamma}{\cos \gamma} + \frac{B_\phi}{B_\theta} \right]$$
Sources Backup Slide Here

- Really interesting plot
Ion-Impurity Friction Can Cause Impurity Density Asymmetries

- Helander-Fülöp-Landreman [5-7] developed theory for in-out impurity density asymmetry
 - Neoclassical (no anomalous transport)
 - Driven by ion-impurity friction in all collisionality regimes
- Theory not strictly valid in the pedestal, since pedestal transport non-local ($\rho_{\theta i} \sim L_{ni}, L_{Ti}$) → GUIDE ONLY

\[
\frac{n_{Z,HFS}}{n_{Z,LFS}} = \frac{B_{HFS}^2}{B_{LFS}^2} \frac{1 + \gamma b_{LFS}^2}{1 + \gamma b_{HFS}^2}
\]

where
\[
b = \frac{B}{\langle B^2 \rangle^{\frac{1}{2}}}
\]
\[
\gamma = \begin{cases}
0.33 f_c \frac{L_{Ti}}{L_{ni}} \frac{1}{\nu^* - \frac{1}{2}} & \text{banana} \ (\nu^* < 1) \\
2.8 \frac{L_{ni}}{L_{Ti}} & \text{Pfirsch-Schlüter} \ (\nu^* > \varepsilon^{-3/2})
\end{cases}
\]

LIMITS
\[
\frac{L_{ni}}{L_{Ti}} \rightarrow 0, \quad \frac{n_{Z,HFS}}{n_{Z,LFS}} = \frac{B_{HFS}^2}{B_{LFS}^2} \sim 4
\]
\[
L_{ni}, L_{Ti} \rightarrow \infty, \quad \frac{n_{Z,HFS}}{n_{Z,LFS}} = 1
\]

Churchill/APS 2013
Comparison with High-Energy Beam CXRS

- LFS GP-CXRS profiles match well profiles from LFS NBI-CXRS profiles (50keV, 7A diagnostic neutral beam)

- Higher signal in pedestal a major advantage for GP-CXRS on C-Mod
Pedestal Characteristics: Comparing Boron and Fluorine in H-mode

- **In-out** boron (B^{5+}) density pedestal shifts quantitatively agree with **up-out** fluorine (F^{8+}) emissivity pedestal shifts [Pedersen, PoP, 2002]

Soft X-Ray Views

![Soft X-Ray Views](image-url)
In-Out Impurity Density Asymmetry Develops During ELM-free H-mode

- $n_{B^5^+}$ asymmetry develops during H-mode phase, disappears during L-mode-like radiative collapses.
Poloidal Variation in n_e, n_i, Φ

Given n_z and Assuming $T=T(\psi)$

\[n_e(\psi, \theta) = \frac{Z - 1}{2} [n_z - n_{z0}] + n_{e0} \]
\[n_i(\psi, \theta) = -\frac{Z + 1}{2} \left[n_z + \frac{Z - 1}{Z + 1} n_{z0} \right] + n_{e0} \]
\[\Phi(\psi, \theta) = \Phi_0 + \frac{T(\psi)}{e} \ln \left(\frac{Z - 1}{2} \frac{n_z - n_{z0}}{n_{e0}} + 1 \right) \]

“0”: Parameter at specific poloidal angle θ_0

Poloidal Variation
- <6% of n_e, n_i
- <10V of Φ

Churchill/APS 2013
H-mode Flux Functions

- Nonlocal treatment of neoclassical transport ($\rho_{\theta i} \sim L_{ni}, \rho_{\theta i} << L_{Ti}$) shows significant poloidal variation in k [Landreman PPCF 2012]
 - Due to non-divergent radial particle flux

- For C-Mod case, full nonlocal treatment ($\rho_{\theta i} \sim L_{ni}, \rho_{\theta i} \sim L_{Ti}$) needed, from e.g. XGC0

Figure from M. Landreman, PPCF, 2012