Access to and Performance of I-Mode Plasmas on Alcator C-Mod

A. E. Hubbard, S. M. Wolfe,
S.-G. Baek, R. M. Churchill, I. Cziegler
B. LaBombard, Y. Lin, E.S. Marmar, M.L. Reinke, J.E. Rice,
P. Snyder, J.L. Terry, C. Theiler, C. Sung, J. R. Walk,
A.E. White, D.G. Whyte and S.J. Wukitch

MIT Plasma Science and Fusion Center

¹Univ. California, San Diego
²General Atomics

TP8:034, 55th Meeting of the APS Division of Plasma Physics
November 11-15, 2012, Denver CO
Abstract

The I-mode regime of operation features an edge thermal transport barrier, without a particle barrier. Stationary conditions are thus achieved without impurity accumulation, and usually without ELMs. In contrast to the EDA H-mode regime on Alcator C-Mod, it is readily accessed at low q_{95} and low collisionality, both relevant for ITER. Analysis of a dataset of 400 discharges at $q_{95} \sim 3$ shows normalized energy confinement in I-modes reaches or exceeds that in most H-modes, up to $H_{98}=1.2$. Confinement and pedestal temperature increase with input power. In some cases I-mode is maintained up to the maximum available power (5 MW ICRF) while in others a transition to H-mode limits the performance. Understanding and extending the conditions for entering and staying in I-mode is thus critical for extrapolation of the regime. Experiments have extended the regime both to lower densities and to higher densities and powers through gas puffing into established I-modes. Results from an expanded database of C-Mod discharges will be presented, along with details of I-mode profiles and fluctuations, including GAMs and a weakly coherent mode, which are providing insights into the physics of the regime.

This work WAS supported by DOE FES; DE-FC02-99ER54512-CMOD
Key features of the I-mode regime
Why I-mode?
H-mode regime has some big issues

- H-mode features **simultaneous formation of edge density and temperature barriers** or “pedestal”.
- **Energy confinement** roughly doubles over L-mode, a major advance which has made it the standard operating regime for present tokamaks. **GOOD**

- **BUT**, increased **particle confinement** leads to some serious issues:
 1. **Impurities can accumulate.** (esp with metal walls)

 2. **Pedestals rise to stability limit, triggering ELMs.**
 Edge instabilities are needed to expel particles.
 ELM heat pulses are unacceptable in ITER!
 ELM mitigation or avoidance is needed, and a serious challenge, for ITER and even more for fusion reactors.

- An energy transport barrier without a particle barrier (but with controllable density) would be ideal.
I-mode regime has T_e and T_i pedestal, without density barrier.

- Steep T_e pedestal – up to 1 keV, $\nabla T > 100$ keV/m.
 - T_i pedestals are similar.

 Pedestal details in J. Walk invited talk this afternoon! UI2:3

 This leads to higher T_e, T_i and pressures across profile.

- L-mode density profile, with broad SOL.

I-mode has also been observed on ASDEX Upgrade (Ryter EPS 2011) and recently on D3D (Marinoni poster UI2:3, Thurs pm).
I-mode is a stationary, high energy confinement, ELM-free regime

- **Steady I-modes can be maintained for many** τ_E, **often limited only by plasma and heating pulse duration.**
- Energy confinement comparable to, can even exceed, H-mode scalings. Whyte, Nucl. Fusion 2010
- **I-modes are usually ELM-free.**
- **L-mode particle confinement,** compatible with high Z PFCs, and with impurity seeding.

Graph:

- τ_I vs. H_{98}
- L-mode vs. I-mode
- EDA H-mode
- P_{ICRF} (MW)
- $n_e (10^{20} \text{m}^{-3})$
- $T_e(0)$ (keV)
- $T_{e,ped}$ (keV)
- $<P>$ (atm)
- $H_{\text{ITER98/2}}$
- D_α
- ELM-free
- High confinement

Data Points:

- $I_{\text{mode}} = 1.1 \text{ MA, } 5.8T$
- $q_{95} = 3.4$
Characteristic changes in edge fluctuations at L-I transitions

- As the T pedestal forms, see
 - A DECREASE in edge broadband turbulence (n and B) in mid-f range (~60-150 kHz)
 - Usually a PEAK in turbulence at higher f “Weakly Coherent Mode” (~ 200-400 kHz).

- At the H-mode (particle barrier) transition, remaining turbulence drops suddenly, density rises.

1.3MA, 5.8T
$q_{95}=3.1$
Access to I-mode
I-mode is generally achieved with $B \times \nabla B$ drift away from X-pt.

- For C-Mod, can use either ‘normal’ B_T and I_p, USN, or ‘reversed’ B_T and I_p, LSN.
 - Some I-modes have been seen with “favorable” drift towards X-pt, but limited to an atypical shape, and low power.
Thresholds for L-I transitions increase with both current and density

- Thresholds for L-I transition, in unfavorable drift are, not surprisingly, above the ITPA L-H scaling for “favorable” (for H-mode) drift. Typically 1.5-3 times.

Loss power defined as

\[P_{\text{loss}} = P_{\text{ohmic}} + P_{RF, \text{abs}} - \frac{dW}{dt} \]

\(P_{\text{loss}} \) (L-I) increases with current as well as density. Regression fit to 2011 dataset gave

\[P_{\text{L-I}} (\text{MW}) = 2.1 I_p^{0.94} n_e^{0.65} \]

Hubbard
Nucl. Fusion
October 2012
Threshold studies extended to higher and lower densities

- For 1.1 MA, 5.8 T LSN discharges, L-H transitions were observed for target nebar between 0.9 and $1.8 \times 10^{20} \text{ m}^{-3}$.
- Minimum L-I threshold at $\sim 1.4 \times 10^{20} \text{ m}^{-3}$.
- Below 0.8×10^{20}, just get poor L-mode. Impurity issue?
- Above 1.8×10^{20}, get transitions from L-mode directly to H-mode.

- BUT, higher density and power I-modes could be achieved by fueling into I-mode. (arrows show shot below)
Gas fuelling into I-modes on C-Mod enables higher densities

- Gas fuelling into hot I-mode raised n_e by 30%, to 2×10^{20} m$^{-3}$, with nearly constant stored energy, and $H_{98}>1$.
 - This is above the density for which transitions to I-mode typically occur.

→ Implies I-mode can exist as long as power is sufficient to maintain T_e pedestal, drive WCM

- Only tried fueling in a few I-mode discharges late in 2012 campaign – there is room to increase density range!

- Important for potential extrapolation to ITER scenarios.
I-mode confinement and performance
Parameter space for C-Mod I-modes is very wide

- Robust regime, obtained over a wide range of parameters:

 \[
 \begin{align*}
 I_p & = 0.8 - 1.3 \text{ MA} \\
 B_T & = 3.0 - 6.1 \text{ T} \\
 q_{95} & = 2.5 - 5.3 \\
 \langle n_e \rangle & = 0.85 - 2.3 \times 10^{20} \text{ m}^{-3} \\
 \text{ICRF power} & = 1 - 5.5 \text{ MW} \\
 \nu^* & = 0.1 - 5.4
 \end{align*}
 \]

 Note that \(B_T\), \(n_e\) and \(q_{95}\) span ITER ranges.

 Collisionality is close, no lower limit observed.

All C-Mod experiments use molybdenum PFCs, RF heating, no momentum or core particle input.
3 databases established for different studies

- **I-Mode scalar database.**
 - Contains many global parameters, some pedestal parameters, but not from most accurate profiles.
 - Hand-selected slices, 262 I-modes, 58 L-I transitions, 56 I-H transitions.

- **I-mode pedestal database.**
 - Carefully calibrated and fit edge TS profiles, suitable for pedestal scalings and stability analysis.
 - 72 I-mode slices.

- **Low q\textsubscript{95} global database**, set up by request of IOS ITPA to guide ITER projections.
 - Contains ALL suitable discharges since 2007 with $2.7 < q_{95} < 3.3$.
 - 682 shots, including 252 H-modes (mostly EDA, ELM-free), 157 I-modes, 202 L-modes, remainder transitions.
Power and density ranges for I-mode are increased in Lower Null configuration

- Configuration with LSN, reversing B_T and I_p, enables I-mode at lower density, and over much higher power range (> 2x) than USN. *Due to shape, or closed divertor?*

- Power range can be up to max available power (5 MW ICRF), at least a factor of two above L-I threshold

- This in turn has led to more robust, longer duration I-modes, in most cases without transitions to L or H-mode as long as heating is maintained.
 - Do not know limits in P, beta.
I-mode has H-mode-like energy confinement, but with little power degradation

- \(H_{98y2} = 0.7-1.2 \), comparable to H-modes. But, scatter indicates differences in \(\tau_E \) scaling.

- A key difference to ELMy H-mode is much less (no?) confinement degradation with power!

Note: \(H_{98} \) is computed using \(W_{\text{MHD}} \). Some of the highest \(T_e \) discharges can have significant fast ion contributions to \(W \).
At $q_{95} \sim 3$, typical confinement of C-Mod I-modes exceeds H-modes.

- Includes all RF-heated discharges with $2.7 \leq q_{95} \leq 3.3$, the expected range of ITER baseline, meeting a few other criteria.
Used automated analysis to assess typical duration of highest performance phase

- For each discharge, the “data interval” is taken where \(W > 0.85 \) maximum \(W \); averages are near but not at peak performance.
- Also must meet other ITPA criteria:
 - \(2.7 < q_{95} < 3.3 \)
 - \(P_{\text{rf}} > 1 \text{MW} \)
- “Heating interval” taken where \(P_{\text{rf}} > 1 \text{MW} \); may not be constant (or reach I-mode or H-mode thresholds) for entire interval.
- Relative duration of intervals (following page) thus gives a sense of typical discharge evolution, but can be affected by operational as well as physics issues.

Example: Discharge with 2 H-modes, radiation increasing.
At $q_{95} \sim 3$ typical duration of high confinement phase in I-modes exceeds H-modes.

- Plots show selected data interval duration/ heating interval duration.
- **Low q_{95} H-modes** are often transient (ELM-free or marginal EDA). Impurity accumulation leads to radiative cooling.
- **I-modes** are generally more steady (ie high H_{98} phase lasts most of heating pulse).
- Difference is greatest at high power; note C-Mod has ICRH, Mo PFCs.
H$_{98}$ at q$_{95} \sim 3$ increases with β_N

- H-mode data shows “saturation” around $H_{98} \approx 1$ at high β_N (all low B)
- I-mode data appears more linear, but
 - Range of β_N is limited (due to power; no low-field cases)
 - All I-mode data is at low f_{GW}
- Extending the I-mode data to higher β_N in C-Mod requires operation at lower field, or even higher power.
- Extending to higher f_{GW} will require fueling into I-modes, at high power.
- NEED MORE C-Mod EXPERIMENTS TO EXPLORE LIMITS!!
 (pumped, baked and ready to run, on ~2 weeks notice)
Pedestal physics
Edge T barrier and **decrease in mid-f turbulence** are key signatures of L-I transitions

- At transition from L to I-mode, **edge ∇T steepens**, at near-constant P_{net} and edge n_e

 \Rightarrow **Edge χ_{eff} is decreasing.**

 Quantified by edge power balance calculations over outer 5%.

- **Edge χ_{eff} correlates well to the drop in mid-f turbulence** (\sim60-150 kHz) from reflectometry
 - Sharpest drop at low q_{95}.

- **CORE transport and turbulence (both δn_e and δT_e)** also promptly decrease.

 Anne White talk CO4:3
Weakly Coherent Mode seen in density, magnetics, ECE, localized to barrier region

- In most I-modes, a higher frequency turbulence feature appears, simultaneous with mid-freq reduction. $f_0 \sim 200-400$ kHz, $\Delta f/f \sim 0.3-1$, increasing with q_{95}.

- Fluctuations seen in B (magnetics), Density (Reflectometry, Gas Puff Imaging, PCI, and Electron Temperature (ECE). $\delta T_e/T_e < 1.6\% < \delta n_e/n_e < 6-13\%$.

- Refl, ECE and GPI all localize the mode to within 1-2 cm of the separatrix, ie region of T pedestal. ($0.9 < r/a < 1.0$).
 - Can be very narrow in some cases (few mm radial extent)

A. White, Nucl. Fusion 2011
Amplitude of WCM correlates with edge particle flux

- Analysed power steps within I-mode discharges.
- Relative amplitude of WCM from edge reflectometer.
- Edge particle flux Γ_{LCFS} derived from absolutely calibrated D_α imaging near the outboard midplane.
- Correlation with Γ_{LCFS} is consistent with the WCM playing a key role in driving particle transport, perhaps helping avoid transition to H-mode.
 - Analogous to role of QC mode in EDA H-mode.

A. Dominguez, MIT Ph.D. 2012
Some discharges show a T pedestal, without WCM measured on reflectometer

- WCM is strongest and most coherent at low \(q_{95} \), high \(T_{\text{ped}} \) (both favorable trends for burning plasmas).

- Database analysis reveals cases without evident WCM on reflectometer are at higher \(q_{95} \), lower \(T_e \).
 - In at least this example, WCM is present on GPI but radially localized to only few mm. Perhaps between reflectometer channels?
 - Study of more such cases is ongoing.
Gas Puff Imaging also shows GAMs in I-mode

- **2-D Gas Puff Imaging** in addition to WCM shows a $k=0$ feature in v_θ at ~ 20 kHz, which interacts with WCM.
 - From Time Delay Estimation

- Modes co-exist in same radial region, in E_r well.

- Frequency agrees well with GAM scalings.

I Cziegler, PoP 2013
GAM on C-Mod is unique to I-Mode, persists throughout regime.

- Both GAM and WCM disappear at I-H transition.
- Around this time, the estimated non-linear GAM drive (black curve, top panel) drops below $4v_{ii}/7q$, related to the collisional damping rate (red curve); [Cziegler PoP 2013].

Details of GPI diagnostic and analysis, and L-H transition physics, in I. Cziegler Poster U13:03, (this session).
Typical I-mode pedestal calculated to be stable to peeling-balloonning and KBM modes (ELITE)

- Peeling-baloonning instability thought responsible for ELM trigger in Type-I ELMing H-mode, with KBM also limiting gradient. C-Mod ELMy H-modes confirm this picture.
- I-modes, due to reduced density & pressure gradients, stay below p-b stability boundary, and also infinite-n ballooning stable, suggesting KBMs are stable.
 - I-mode has wider pedestal, lower pedestal j_{boot}
I-mode pedestals are wider than EPED scaling for H-mode, also consistent with WCM stability.

Details of this and many other pedestal scalings in John Walk’s invited talk this afternoon.
Key Issues for I-mode
Initial extrapolation from C-Mod indicates I-mode may be an attractive ITER scenario.

- Extrapolating from C-Mod threshold scalings access to I-mode appears possible at nebar $\approx 5 \times 10^{19}$ m$^{-3}$.
- Confinement trends indicate ITER could achieve $Q=10$ by raising n_e, staying within stability limits.
- BUT, these trends have large uncertainties.

Whyte
APS 2011
Key uncertainty and power limit is set by transitions to H-mode

- Confinement in I-modes increases with power. Upper limit to pressure is thus set by how much can be injected.
- In the best C-Mod examples, all of the available power can be coupled while remaining in I-mode; have not yet reached β limit.
- However, in many cases, increasing power results in a transition to H-mode. The power window can be quite narrow, with $P_{\text{loss}} (I-H)$ close to $P_{\text{loss}} (L-I)$.
 - Typical so far on AUG and DIII-D, and at higher target densities on C-Mod.

- I-H power threshold is highly variable – not a good scaling yet.
- Experiments where I-mode window was extended by fueling while heating offer a potential route to expanding operating space.

- Need a better understanding of thresholds and transitions with unfavorable drift!
Multi-device experiments are needed (and underway) for size and parameter scaling

Cannot extrapolate to ITER (or present devices) from C-Mod alone.

Key open questions:

- What is size scaling of L-I threshold? I-H threshold?

- Which dimensionless parameters are most important?

- What is the ultimate limit on beta in I-mode? (set by MHD or I-H?)

- How does I-mode confinement scale with size, \(I_p, B_T \) etc?

I-mode has been clearly demonstrated on AUG for several years (eg Ryter EPS 2011).

Recently produced on DIII-D, as part of US Joint Research Target experiments. Several ITPA Joint Experiments: PEP-31, TC-18, TC-19

Experiments are planned on EAST in 2014, being considered elsewhere.
Summary

• I-mode regime features thermal transport barrier, but with L-mode density profiles and impurity confinement, and without a need for ELMs. VERY ATTRACTIVE FOR FUSION!
 o Energy confinement \(\sim \tau_{98y2} \), but with little power degradation.

• C-Mod LSN, unfavorable Bx\(\times\)B drift configuration enables stationary I-modes without transitions, over a wide range of power and plasma parameters, many spanning ITER’s.

• At \(q_{95} \sim 3 \), relevant to ITER, ITPA database shows:
 o I-modes have higher average confinement than H-mode.
 o I-modes have longer duration, especially at high ICRH power.

• Measurements of edge turbulence, profiles and transport show
 o Decrease in mid-freq fluctuations correlates with pedestal \(\chi_{\text{eff}} \).
 o Core turbulence and transport are also reduced in I-mode.
 o Weakly Coherent Mode in \(n_e, B, T_e \) correlates with particle flux.
 o GAM seen throughout I-mode, interacts with WCM.
 o Pedestals stable to peeling-ballooning and KBM, hence ELM free.

• Initial extrapolations of C-Mod results to ITER are encouraging. Further experiments, on both C-Mod and other tokamaks, are needed!!