Observations of Intrinsic Rotation Reversal Hysteresis in Alcator C-Mod Plasmas

N.M. Cao¹, J.E. Rice¹, A.E. White¹, S.G. Baek¹, M.A. Chilenski¹, A.J. Creely¹, P.H. Diamond², E.M. Edlund¹, P.C. Ennever¹, A.E. Hubbard¹, J.W. Hughes¹, J. Irby¹, M.L. Reinke³, P. Rodriguez-Fernandez¹, and the Alcator C-Mod Team

¹Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
²University of California, San Diego (UCSD), San Diego, CA, USA
³Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA

November 2nd, 2016

58th Annual Meeting of the APS Division of Plasma Physics, San Jose, CA

This work is supported by the US DOE under grant DE-FC02-99ER54512 (C-Mod)
Motivation: In L-mode, Intrinsic Rotation Correlates with Ohmic Confinement Scaling

- Toroidal rotation observed in L-mode plasmas with no external torque
 - In C-mod, rotation profiles of Ar16+ are measured with HiReX-SR
- Rotation can reverse, and in ohmic plasmas is correlated with LOC/SOC transition [Rice NF 2013]
- Theory suggests need for residual stress term to generate intrinsic torque – do changes in turbulent state unify reversals and the LOC/SOC transition?

[Rice NF 2011]
Overview: Rotation reversal hysteresis observed in response to density ramps

• Reversals demonstrate hysteresis, so the same plasma parameters can lead to multiple rotation states

• Hysteresis response to up/down ramps is demonstrated at multiple currents

• Can compare turbulence at the same plasma parameters but differing rotation state within a single shot
Hysteresis loops show clearly separated co-counter-current transition densities

USN 5.4 T \(T_{e0} \approx 2.7 \text{ keV} \) \(q_{95} = 4.7 \)
0.8 MA \(T_{i0} \approx 1.3 \text{ keV} \) \(v_{\text{min}}^* \approx 0.4-0.5 \)
Qualitatively similar hysteresis observed at multiple currents

<table>
<thead>
<tr>
<th>Current</th>
<th>$T_e0 \approx$</th>
<th>$q_{95} = $</th>
<th>$n_e [10^{20}/m^3]$</th>
<th>$v^{*}_{min} \approx$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8 MA</td>
<td>1.9 keV</td>
<td>4.7</td>
<td>0.70 - 1.00</td>
<td>0.4 - 0.5</td>
</tr>
<tr>
<td>1.1 MA</td>
<td>1.7 keV</td>
<td>3.5</td>
<td>1.0 - 1.6</td>
<td>0.4 - 0.5</td>
</tr>
</tbody>
</table>
Hysteresis used to probe PCI spectra with same local plasma parameters

• Phase Contrast Imaging (PCI) measures line-integrated \tilde{n}_e, $k_R < 30 \text{ cm}^{-1}$
 • $+k_R$ goes from LFS to HFS, aligned with electron diamagnetic drift direction at top
 • $\pm k_R$ asymmetry $<>$ up/down asymmetry

• High-k ($k_R \rho_s = 0.1\sim1.0$) “wings” are observed in co-current 1.1 MA ohmic plasmas, but not co-current 0.8 MA ohmic plasmas [Rice NF 2013]
1.1 MA Ohmic – **different** toroidal rotation, **same** local profiles...

\[
\begin{align*}
\text{Co-current} &+20 \text{ km/s} \\
\text{Counter-current} &-7 \text{ km/s}
\end{align*}
\]

\[n_e\] [10^{20} \text{ m}^{-3}] \\
\[a/L_{n_e}\] [-] \\
\[T_e\] [keV] \\
\[a/L_{T_e}\] [-]

\(r/a\)

(Ti profiles WIP due to instrumental effects, but emissivity-averaged Ti changes ~50eV)
1.1 MA Ohmic – different toroidal rotation, same local profiles, different PCI spectra
0.8 MA Ohmic – different toroidal rotation, same local profiles...

(Ti profiles WIP due to instrumental effects, but emissivity-averaged Ti changes ~50eV)
0.8 MA Ohmic – different toroidal rotation, same local profiles, same PCI spectra
Hysteresis also observed in response to ICRF heating ramps

- Introduced **ICRF heating ramp** (0.2-1.2 MW) to 0.8 MA plasma held at fixed density
 - Compare: 0.95 MW P_{ohm} @ 0.8 MA, 1.45 MW P_{ohm} @ 1.1 MA

![ICRF Power](attachment:image1)

USN 5.4 T
- $T_{e0} \approx 2.4$ keV
- $T_{i0} \approx 1.7$ keV
- $q_{95} = 4.7$
- $v^*_\text{min} \approx 0.4$-$0.5$

![Graph](attachment:image2)
0.8 MA +ICRF – different toroidal rotation, same local profiles...

(Ti profiles WIP due to instrumental effects, but emissivity-averaged Ti changes ~50eV)
0.8 MA +ICRF — different toroidal rotation, same local profiles, different PCI spectra!

Frequency [kHz]

Counter-current -10 km/s Co-current +30 km/s

![Graph showing frequency vs. kR for both current directions]
Addition of ICRF breaks “wing”/current correlation

1.1 MA Ohmic, Co-Current +20km/s

0.8 MA +ICRF, Co-Current +30km/s
Up/down asymmetries modified by rotation state when “wings” present

- Compare integrated power of PCI fluctuations $2 \text{ cm}^{-1} < \pm k_{R} < 10 \text{ cm}^{-1}$
 - High: $300 \text{ kHz} < f < 700 \text{ kHz}$
 - Low: $50 \text{ kHz} < f < 200 \text{ kHz}$

- Steady co-current rotation has more power in fluctuations with $+v_{ph,R}$ (lab frame, LFS to HFS) when “wings” are also present

\[
\frac{(P_{+k_{R}} - P_{-k_{R}})}{\bar{P}}
\]
Conclusions

• Intrinsic Rotation in L-mode displays robust hysteresis at multiple currents in response to density ramps

• Nearly identical electron density and temperature profiles from the same shot can lead to different rotation profiles

• Addition of ICRF heating to 0.8 MA plasmas can cause “wings” ($k_R \rho_s = 0.1 \sim 1.0$), previously observed in 1.1 MA plasmas, to appear in PCI spectra

• Changes in ion-scale turbulence measured by PCI are observed if “wings” are present, but these are not a necessary condition for a rotation reversal