RECENT HIGHLIGHTS FROM C-MOD PROGRAM

APS-DPP October, 2003
For National Alcator Team
Presented by Martin Greenwald
MIT – Plasma Science & Fusion Center
OUTLINE

- ICRF
- Transport
 - Core
 - Pedestal
 - SOL
- MHD
- LHCD & Near-Term Plans
ICRF Heating at Very High Power Density

- High power operation.
 - 5 MW operation for 0.5 sec.
 - Flexible phase operation for 4 strap antenna.
- Significant sawtooth modification
 - Depends on antenna phasing
 - Current Drive
 - Fast Ions
 - Power Deposition
- Target scenario for current and flow drive experiments.

Lin – GI2.005, Wright – GI2.006
Wukitch – CO1.006, Schilling – FP1.002
Parisot – FP1.003, Yuh – FP1.015
Transport Studies Span the Entire Plasma

<table>
<thead>
<tr>
<th>Core</th>
<th>Pedestal</th>
<th>Near Sol</th>
<th>Far Sol</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Self-generated flows and momentum transport</td>
<td>- Profiles & stability</td>
<td>- Profiles & micro-stability</td>
<td>- Convective transport - “Blobs”</td>
</tr>
<tr>
<td>- ITB Physics</td>
<td>- Neutral effects</td>
<td>- stability boundaries</td>
<td>- Particle & Impurity Sources</td>
</tr>
<tr>
<td>Rice – BI1.003</td>
<td>- H-mode Threshold</td>
<td>- In-out asymmetries</td>
<td>LaBombard-CO1.002</td>
</tr>
<tr>
<td>Fiore – UI1.004</td>
<td></td>
<td>- Flows</td>
<td>Grulke – CO1.003</td>
</tr>
<tr>
<td>Ernst – UI1.005</td>
<td>Terry – CO1.004</td>
<td>LaBombard-CO1.002</td>
<td></td>
</tr>
<tr>
<td>Basse – CO1.010</td>
<td>Sampsell – CO1.005</td>
<td>Grulke – CO1.003</td>
<td></td>
</tr>
<tr>
<td>Redi – KO1.007</td>
<td>Zweben – CO1.007</td>
<td>Lynn – FP1.009</td>
<td></td>
</tr>
<tr>
<td>Lin – FP1.005</td>
<td>Lynn – FP1.009</td>
<td>Hughes – FP1.011</td>
<td></td>
</tr>
<tr>
<td>Phillips – FP1.010</td>
<td>Hughes – FP1.011</td>
<td>Smick – FP1.012</td>
<td></td>
</tr>
<tr>
<td>Rowan – FP1.014</td>
<td></td>
<td>Graf – FP1.018</td>
<td></td>
</tr>
<tr>
<td>Yuh – FP1.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhurovich FP1.016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bose – FP1.019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In – FP1.021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott – FP1.022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EVALUATION OF ROTATION PROFILES ALLOWS MOMENTUM TRANSPORT TO BE DETERMINED

- Self-generated flow profiles vary dramatically in different regimes
- Rotation profiles are flat in EDA H-mode – momentum diffuses from edge
- Evolution in ELM-free plasma demonstrates inward momentum convection
- Some similarities to impurity, particle behavior
- Comparisons with theory

![Graphs showing EDA and ELM-free plasma data](image-url)
ITB CONTROL – LOCATION OF BARRIER

- Previous work focused on control of barrier strength through mix of on and off-axis ICRF heating
- Barrier location can apparently be controlled by varying B field

- Open question is this a q or q’ effect (or something else)?

Fiore- Ul1.004, Ernst – Ul1.005, Redi – KO1.007
Optical measurements show QC radial extent < 4 mm – resolution limited

Probe measurements showed 1-2 mm but may perturb flux tube
CROSS-FIELD TRANSPORT IN SOL IS CRUCIAL FOR DYNAMICS OF EDGE PLASMA AND DIVERTOR

- Near-SOL – steep gradients, moderate fluctuations
 - Transport is not Bohm-like
 - Even in L-mode, shear layer with reduced transport is observed
 - Dependence on normalized pressure and collisionality space consistent with theoretical treatments (Rogers, Scott)
- Far-SOL – flat gradients, bursty or “bloppy” transport
LARGE POLOIDAL ASYMMETRIES IN SOL PROFILES AND FLUCTUATIONS ARE OBSERVED

- Scanning electrostatic probe and optical diagnostics are deployed at low-field and high-field locations
- Observations confirm ballooning nature of turbulence
- Lower levels of fluctuations and sharper profiles are seen in “good” curvature regions – especially in double null topology
- Significant flows are driven as plasma attempts to “re-symmetrize”

Smick – FP1.012, LaBombard-CO1.002
Locked modes implicated in high-current disruptions on C-Mod

7 new coils (A-coils) to investigate error fields and locked modes

Intrinsic error field ~0.35 mT
n=1, m=2 component dominant

Strong inverse size scaling of locking threshold (LaHaye ‘97) implied challenging sensitivity to error fields for ITER
 o Scaling Implications of C-Mod measurements
Near-Term Plans Emphasize AT Program Enabled by LH Current Drive

- Installation of 1st launcher this year – 3 MW source power at 4.6 GHz
- Waveguide phase control allows real-time control of launched spectrum
- High-efficiency off-axis current drive (r/a > 0.7)
- Goals are creation and control of AT regimes
 - For times longer than L/R time.
 - No core particle or momentum source
 - Coupled electrons and ions
 - High power density handled by metal first wall
- Enhanced core diagnostics (fluctuations, profiles)

Bonoli – CO1.008
Tang – FP1.006
Liptac – FP1.007