C-Mod Pedestal Program

Alcator C-Mod Program Advisory Committee Meeting
January 27–29, 2010
Presented by Jerry Hughes
Pedestal physics: An integral component of the C-Mod research program

- *Edge barrier formation, profile structure* and *relaxation processes* all play critical roles in high-performance operation of tokamaks
- Issues permeate number of topical science areas and programmatic thrusts, and research contributes to FESAC, ITER priorities
- **Ultimate goal:** physics-based models for burning plasma which are scalable to ITER and beyond
- *Pedestal structure* is the focus of FY11 Joint Research Target
- C-Mod occupies a unique parameter space that complements studies on other devices (large B/R, n_eL, range of pedestal collisionality)

- Research highlights and plans covered in this presentation:
 - L-H thresholds and transition physics
 - Pedestal structure and transport
 - H-modes
 - Improved L-modes
 - Edge relaxation mechanisms
 - Pedestal control
 - Theory and simulation
C-Mod exploits large range of operational space for pedestal studies

- C-Mod pedestal studied over *extended range* of engineering parameters: e.g. B_T, I_p, n_e
- Increased studies of operation with "alternative" magnetic topology
 - Extremes in *shaping*
 - Unfavorable ion ∇B drift direction (in both normal and reversed B_T direction)
 - Near double null
- Lower collisionality with above techniques, cryopumping
- Access a wide range of regimes
 - EDA, ELMy H-modes
 - Improved L-mode with T pedestal
C-Mod exploits large range of operational space for pedestal studies

- C-Mod pedestal studied over *extended range* of engineering parameters: *e.g.* B_T, I_p, n_e
- Increased studies of operation with “alternative” magnetic topology
 - Extremes in *shaping*
 - Unfavorable ion ∇B drift direction (in both normal and reversed B_T direction)
 - Near double null
- Lower collisionality with above techniques, *cryopumping*
- Access a wide range of regimes
 - EDA, ELMy H-modes
 - Improved L-mode with T pedestal
We are enabled by an extensive set of well-resolved edge diagnostics

Pedestal diagnostic set emphasizes *millimeter-resolution* profiles, fluctuations

- **Thomson scattering** \((T_e, n_e)\)
- **CXRS** \((T_i, v_{i\theta}, v_{i\phi})\)
 - Inner wall toroidal views (passive and gas-puff assisted)
 - Pedestal beam-based CXRS (*toroidal* and *poloidal* views)
- **Scanning Mach probes**, HFS+LFS \((T_e, n_e, v)\)
- Electron cyclotron emission \((T_e)\)
- Visible bremsstrahlung \((n_e Z_{\text{eff}}^{1/2})\)
- Soft x-rays \((n_i)\)
- **Neutral emissivity measurements** (passive, gas puff imaging)
- Reflectometer \((n_e\) fluctuations\)
- Phase-contrast imaging \((n_e\) fluctuation\)
We are enabled by an extensive set of well-resolved edge diagnostics

Pedestal diagnostic set emphasizes millimeter-resolution profiles, fluctuations

- **Thomson scattering** \((T_e, n_e)\)
- **CXRS** \((T_l, v_{l\theta}, v_{l\phi})\)
 - Inner wall toroidal views (passive and gas-puff assisted)
 - Pedestal beam-based CXRS (toroidal and poloidal views)
- Scanning Mach probes, HFS+LFS \((T_e, n_e, v)\)
- Electron cyclotron emission \((T_e)\)
- Visible bremsstrahlung \((n_e Z_{eff}^{1/2})\)
- Soft x-rays \((n_l)\)
- Neutral emissivity measurements (passive, gas puff imaging)
- Reflectometer \((n_e\) fluctuations\)
- Phase-contrast imaging \((n_e\) fluct.)

Student involvement in diagnostic development is high
L-H transition physics and H-mode access: Research supporting ITER

- C-Mod participates in an ITPA task force on H-mode threshold
 - Significant part of H-mode Integrated Scenarios thrust (S. Wolfe, tomorrow)
 - A research priority for next few years

- Recent progress:
 - Comparison of H-mode power threshold in He vs. D plasmas
 - Informs ITER non-activation phase (ITPA joint experiment TC-4)
 - Higher power thresholds in He
 - Consistent with experience on many other devices, but not all; need physics understanding

- Scalings of low-density limit for L-H transition is an ITER priority
 - ITPA joint experiment (TC-3) among C-Mod, DIII-D, JET, AUG, TCV is collecting data sets at varied I_p, B_T; entering data analysis phase

- Will participate in new ITPA joint experiments: ’10—’12+
 - Address thresholds in terms of local edge parameters (PEP-26)
 - X-point/strike point position/divertor leg length (PEP-28)

- Analysis of data will be aided by implementation of a multi-machine edge profile database, complementing the traditional scalar DB, both maintained at MIT: ’10—’12+
L-H transition physics and H-mode access: Highlights and Plans

- **Recent progress**
 - Exploring scaling of H-mode power threshold in unfavorable ∇B drift discharges
 - Partial suppression of energy transport precedes traditional L-H bifurcation
 - If L-H transition is suppressed, can lead to an improved L-mode (more later)

- **Plans**
 - Renewed focus on *local* edge parameters at threshold: ’10—’12
 - Understand role of SOL flows, edge rotation shear in ETB formation, through more routine diagnosis of pedestal rotation velocities, E_r: ’10—’12
 - Turbulence characteristics across L-H *(more in Boundary): ’10—’11
 - Is there a role for neutrals in suppressing L-H transition at high density? Does fueling location matter? \Rightarrow experiment proposed: ’10
 - Follow up on evidence of reduced P_{th} in near DN \Rightarrow planning experiment (PEP-6): ’10

Figure: H-mode threshold power vs. q_{95} showing two regions of interest: 5T < B_T < 6T and 3.0T < B_T < 3.4T.

Text: Power threshold in unfavorable grad-B drift direction.
Pedestal structure and transport: Highlights

• Role of magnetic topology on pedestal and confinement properties has been investigated (PEP-6)
 – Natural H-mode density reduced for $\Delta R_{SEP}>0$, for sufficiently high power
 – Energy confinement time (absolute and normalized) significantly improved for $\Delta R_{SEP}<0$

• Obtained variation of $|\Delta R_{SEP}|$ within characteristic scale lengths near edge (i.e. 2—5mm)

• Suggests proximity to DN will not be a problem in ITER

• However, as $P_{\text{net}} = P_{\text{loss}} - P_{\text{rad}}$ decreases toward threshold for H-L back-transition, favorable energy confinement lost (TC-2)

• General observation of pedestal “stiffness” in EDA may require minimum P_{in}/P_{th}

• Useful supporting data for FY11 JRT

Scale ITER ΔR_{SEP} to C-Mod: ~-5mm
Pedestal structure and transport: Highlights

- Role of magnetic topology on pedestal and confinement properties has been investigated (PEP-6)
- Obtained variation of $|\Delta R_{\text{SEP}}|$ within characteristic scale lengths near edge (i.e. 2–5mm)
 - Natural H-mode density reduced for $\Delta R_{\text{SEP}}>0$, for sufficiently high power
 - Energy confinement time (absolute and normalized) significantly improved for $\Delta R_{\text{SEP}}<0$
- Suggests proximity to DN will not be a problem in ITER
- However, As $P_{\text{net}} = P_{\text{loss}} - P_{\text{rad}}$ decreases toward threshold for H-L back-transition, favorable energy confinement lost (TC-2)
- General observation of pedestal “stiffness” in EDA may require minimum $P_{\text{in}}/P_{\text{th}}$
- Useful supporting data for FY11 JRT
Pedestal structure: Progress toward predictive understanding (FY11 JRT)

- Pedestal width *nearly invariant* under typical C-Mod operating conditions (EDA/ELM-free)
 - Weak scalings with ρ_ψ, ρ_θ, β_{pol}, neutral fueling depth
 - Indications that magnetic shear plays a role
- **Width scaling in Type I ELMy H-mode** is consistent with $\beta_{\text{pol}}^{1/2}$ scaling used in EPED1 predictive model
- EPED1-like predictions were made for comparison with I_p scan in C-Mod
 - Time-averaged pedestal analysis shows ballpark agreement with prediction
- **Plans**
- Obtain more data, allowing complete ELM-synchronized analysis, benchmarking validation EPED1 and follow-on models: ’10-’11
- C-Mod data are invaluable for testing the diamagnetic stabilization physics in EPED

In collaboration with P. Snyder (GA)
Pedestal structure: Progress toward predictive understanding (FY11 JRT)

- Pedestal width *nearly invariant* under typical C-Mod operating conditions (EDA/ELM-free)
 - Weak scalings with ρ_ϕ, ρ_θ, β_{pol}, neutral fueling depth
 - Indications that magnetic shear plays a role
- Width scaling in Type I *ELMy H-mode* is consistent with $\beta_{\text{pol}}^{1/2}$ scaling used in EPED1 predictive model
- EPED1-like predictions were made for comparison with I_p scan in C-Mod
 - Time-averaged pedestal analysis shows ballpark agreement with prediction

Plans
- Obtain more data, allowing complete ELM-synchronized analysis, benchmarking validation EPED1 and follow-on models: ’10-’11
- C-Mod data are invaluable for testing the diamagnetic stabilization physics in EPED

In collaboration with P. Snyder (GA)
Pedestal structure and transport: Research goals

- Understand processes that limit pedestal gradients between or in the absence of ELMs
 - Important for FY11 JRT
- Are there correlations between turbulence and pedestal saturation?
 - Recent experiment in collaboration with R. Groebner (GA) to examine quasi-coherent mode onset in EDA H-mode
 - Related experiment on DIII-D to look for kinetic ballooning mode
- Plans
 - Linear stability analysis of evolving pedestal with GS2: ’10
 - Connect with attempts to simulate the QCM: ’10—11
 - Analyze dependence of pedestal structure (width, gradients) on magnetic topology and shape: ’10
 - Assess the role of magnetic shear in setting Δ: ’11—12
 - How does this connect to L-mode critical gradient results in Ohmic plasmas?
Pedestal structure and transport: Particles, H-mode density control

- **Research goals and plans:**
 - Ongoing studies of profile stiffness, pedestal width, are being extended to lower collisionality
 - Impact of pumping on pedestal and performance continues to be a focus
 - Also, examine H-mode fueling of pedestal at ITER B_T, q as ITER neutral opacity is approached: ’11
 - Enhance the 2D picture of ionization source → inputs to modeling: ’11—12
 - Take advantage of neutral emissivity profiles at multiple poloidal locations
 - Modeling to facilitate interpretation of these measurements
 - Impurity transport: Exploit HFS/LFS CXRS diagnostics: ’10—11
 - Diagnose impurity transport coefficients in pedestal
 - Characterize in/out asymmetries in impurity profiles

Cryopumping partially ameliorates confinement degradation at marginal power
Improved L-modes: an alternative to traditional H-mode

• Suppression of traditional H-mode: Good for burning plasma operation?
• Obtained in high power discharges with unfavorable ∇B drift (high P_{LH})
• Low particle confinement combined with high energy confinement ($H_{98}\sim1$)
• Temperature pedestals of ~1keV have been obtained with benign impurity confinement
 – Experimental χ_{eff} in pedestal closer to that in H-mode than in L-mode
• Making progress in I-mode sustainment
 – Shaping, I_P optimization
 – Cryopumping, impurity seeding
 – Staying out of H-mode
 • Operating with higher P_{th}
 • Reducing sawtooth size
Improved L-modes: an alternative to traditional H-mode

- Suppression of traditional H-mode: Good for burning plasma operation?
- Obtained in high power discharges with unfavorable ∇B drift (high P_{LH})
- Low particle confinement combined with high energy confinement ($H_{98} \sim 1$)
- Temperature pedestals of ~ 1keV have been obtained with benign impurity confinement
 - Experimental χ_{eff} in pedestal closer to that in H-mode than in L-mode
- Making progress in I-mode sustainment
 - Shaping, I_p optimization
 - Cryopumping, impurity seeding
 - Staying out of H-mode
 - Operating with higher P_{th}
 - Reducing sawtooth size

\[
\begin{array}{c}
\chi_{\text{eff}} \sim 1 - 2 \\
\chi_{\text{eff}} \sim 0.1 - 0.3 \\
\chi_{\text{eff}} \sim 0.05
\end{array}
\]
Improved L-modes: Plans

- Pedestal pressure, *collisionality* similar to that of ELMy H-mode
 - Sporadic ELMs are observed, sawtooth-triggered
 - Transport appears to be regulated by edge mode evocative of the EDA QCM, though favored by reduced ν^*
- Perform comparative stability analyses: '10—11
- Examine conditions for existence of continuous modes → is there a connection to edge harmonic oscillations on DIII-D?: '10—11
- Get at relevant physics keeping H-mode suppressed at higher power
 - Edge flow shear, E_r measurements: '10—11
 - Explore possible role of magnetic shear: '11—12
- *Improved L-modes are attractive targets for research requiring low density, good confinement*
 - Potentially important discharges for core transport studies, LHCD, advanced scenarios integration (more in later talks)
Improved L-modes: Plans

- Pedestal pressure, *collisionality* similar to that of ELMy H-mode
 - Sporadic ELMs are observed, sawtooth-triggered
 - Transport appears to be regulated by edge mode evocative of the EDA QCM, though favored by *reduced* v^*
- Perform comparative stability analyses: ’10—11
- Examine conditions for existence of continuous modes → is there a connection to edge harmonic oscillations on DIII-D?: ’10—11
- Get at relevant physics keeping H-mode suppressed at higher power
 - Edge flow shear, E_r measurements: ’10—11
 - Explore possible role of magnetic shear: ’11—12
- Improved L-modes are attractive targets for research requiring low density, good confinement
 - Potentially important discharges for core transport studies, LHCD, advanced scenarios integration (more in later talks)
Pedestal structure and transport: Flows and radial electric field

- **Research plans:**
 - Relate transport reduction, fluctuation suppression, confinement to level of ExB shear in the pedestal region *in various confinement regimes* ’11—12
 - Explore decoupling of particle and thermal transport suppression (*improved L-modes*)
 - Cross-machine comparisons of E_r well
 - Relative contributions of flow, diamagnetic components
 - Revisit non-dimensional pedestal matching experiment between C-Mod/DIII-D
 - Deploy Doppler reflectometry as edge velocity measurement: ’11—12
 - Comparison of edge impurity flow velocities, E_r with edge codes (i.e. XGC0/1): ’11
 - *Momentum transport through pedestal* → understanding intrinsic rotation without external torque: ’11—12
 - What is the source of large H-mode toroidal rotation?
 - How are the core rotation and SOL flows coupled?
Edge relaxation mechanisms: Continuous pedestal regulation

- **Objective**: Understand the physical processes determining the operational space of edge relaxation mechanisms in H-mode
 - Are small-ELM or no-ELM regimes compatible with a high-confinement ITER pedestal?
- **EDA H-mode**: Continuous transport process driven by fully electromagnetic quasi-coherent mode (QCM) in pedestal
 - Usually with no ELMs
 - Compatible with the appearance of small ELMs at sufficiently high power
- **I-mode**: Likely regulated by an relatively broadband edge mode (Q^2CM?) which is favored by low collisionality

Research goals and plans: Understand mode drive via additional experimental diagnosis and theory/modeling: ’10—12
- Extensive measurements available: PCI, magnetics, reflectometry (static and scannable frequency), fast \(D_\alpha \)
- Use probe with radially spaced elements to determine radial extent and position of the QCM
- Simulations of C-Mod EDA edge
 - BOUT, BOUT++ are candidates
 - M3D (L. Sugiyama)
- Evaluate other candidate mechanisms (e.g. K-H instability, saturated kink/ballooning mode)
Edge relaxation mechanisms: Edge-Localized Modes

- Small ELMs often appear at sufficiently high β in EDA H-modes
- Large Type I ELMs studied in atypically shaped discharges ($dlower>0.75$, $dupper\sim0.15$)
- **Goals and plans:**
 - Continue studying structure and dynamics of edge filaments in ELMs of varying size
 - Resolve boundaries of relaxation regimes in operational space (FY10 facility milestone)
 - Attempt to induce ELMs with vertical jogs: ’10
 - Theoretical understanding of the ELM stabilization obtained naturally on C-Mod (P. Snyder, GA): ’10—11
 - Model C-Mod ELM cycle with XGC0/ELITE (A. Pankin, Lehigh): ’10
 - **Focus on role of shape:** How does shape affect underlying pedestal transport, ELM stability?: ’10—11
 - More efficient stability analysis through importation of data handling codes (T. Osborne, GA): ’10
 - Use stability codes to aid in ELMy discharge development: ’11—12
External pedestal modification

- Combining LHCD with low-density H-modes gives up to 30% reduction in pedestal density, with similar energy confinement.
- Transient behavior of edge, core plasma suggest transport is being altered in stages, possibly at different radial locations.
 - Experiment and modeling indicate enhanced absorption of LHRF in SOL plays an important role.

Plans:
- Improve modeling of LH wave propagation: '10—11
- Understand SOL/core deposition and also determine balance of heating/CD: '10—11
- Compare results with the application of ECH/ECCD on other devices (PEP-22): '11—12
- Explore LHRF as a tool for controlling pedestal structure, ELM quality: '11—12
- Explore possibility of using LHRF and ICRF tools for enhancing or inducing continuous modes in pedestal: '10—12

![Density pedestal relaxation with LHRF](image)
External pedestal modification

- Combining LHCD with low-density H-modes gives up to 30% reduction in pedestal density, with similar energy confinement.
- Transient behavior of edge, core plasma suggest transport is being altered in stages, possibly at different radial locations.
 - Experiment and modeling indicate enhanced absorption of LHRF in SOL plays an important role.

Plans:
- Improve modeling of LH wave propagation: ’10—11
- Understand SOL/core deposition and also determine balance of heating/CD: ’10—11
- Compare results with the application of ECH/ECCD on other devices (PEP-22): ’11—12
- Explore LHRF as a tool for controlling pedestal structure, ELM quality: ’11—12
- Explore possibility of using LHRF and ICRF tools for enhancing or inducing continuous modes in pedestal: ’10—12
Theory and simulation: Plans

- *Use computational tools to enhance our physical understanding, and contribute data for validation of newest edge codes*
- Use measurements to test theoretical predictions of edge E_r and its role in pedestal formation
- Continue ELM/EDA studies with ELITE, M3D (Snyder, Sugiyama)
- Utilize XGC0 for pedestal transport calculations, with 3D EM turbulence calculated by XGC1 (C.-S. Chang, NYU)
- ELM cycle simulation with coupled XGC0/ELITE (A. Pankin, Lehigh)
- Work closely with Center for Plasma Edge Simulation (near term) and Edge Simulation Laboratory (longer term)
 - Code validation
 - Integrated work flow for simulating complex time-dependent edge phenomena (ELM cycle, L-H transition)
- With DIII-D, NSTX, we will work to test models for pedestal structure for the 2011 FES Joint Research Target
Research priorities and approximate timeline for achieving key goals

- **Pedestal themes:**
 - Pedestal structure (and its impact on core confinement) and scalability to future devices
 - Physical processes determining the operational space of edge relaxation mechanisms in H-mode
 - Critical local parameters needed to trigger L-H transition and relationship to global threshold conditions
 - Methods for controlling pedestal structure and edge relaxation mechanisms that are compatible with high confinement
 - Validation of edge simulation tools currently in development using experimental data

- **FY10—11**
 - Examine flux-gradient relationships in the ETB in various configurations and operational regimes; resolve boundaries for edge relaxation mechanisms
 - Expand Type I ELMy data set with full diagnostic coverage for comparisons with modeling
 - Study trigger conditions for L-H transitions (including all edge profile information)

- **FY11—12**
 - Compare pedestal structure with available models, code predictions
 - Study role of edge magnetic shear in determining pedestal width
 - Explore suppression of pedestal density and possible ELM modification with LHRF

- **FY12—13**
 - Examine role of pedestal in spontaneous flow generation
 - Relation of particle, thermal transport to fluctuations, ExB shear suppression in ELMy, EDA H-mode, improved L-mode

Green = Direct contribution to FY11 JRT
We are positioned to contribute to a number of ITER priority tasks

- Improve predictive capability of pedestal structure
 - Cross machine comparisons to isolate physics setting pedestal width
 - Utilize profile database for integrated modeling of pedestal structure and transport comparison to experiment
 - Establish pedestal profile database for hybrid and advanced regimes
 - Assess impact of ELM control techniques on pedestal structure
- Improve predictive and design capability for small ELM and quiescent H-mode regimes and ELM control techniques
 - Assess applicability of low collisionality small ELM regimes
 - Test nonlinear MHD and turbulence models of ELM evolution
- Re-examine L-H power threshold at low density
- Assess H-mode access, pedestal and confinement properties in He plasmas
- Examine core fueling efficiency at neutral opacity approaching that of ITER
We participate in (and lead*) inter-machine collaborations through ITPA

<table>
<thead>
<tr>
<th>Description</th>
<th>ITPA designation</th>
<th>Notes on C-Mod contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestal structure and ELM stability in double null</td>
<td>PEP-6</td>
<td>H-modes in near DN and SN configurations are compared in terms of profile structure and ELM stability.</td>
</tr>
<tr>
<td>Small ELM regime comparison on C-Mod, NSTX and MAST</td>
<td>PEP-16</td>
<td>High-power ELMy regimes accessed in double and single null configurations</td>
</tr>
<tr>
<td>Controllability of pedestal and ELM characteristics by edge ECH/ECCD/LHCD</td>
<td>PEP-22</td>
<td>Modifications to pedestal observed with application of LHRF. Will examine effects of edge CD, electron heating on pedestal transport, ELM stability</td>
</tr>
<tr>
<td>Critical edge parameters for achieving L-H transition</td>
<td>PEP-26*</td>
<td>Will assemble data sets of edge profiles in density scans and analyze for radially localized L-H triggers. Other devices will provide complementary data</td>
</tr>
<tr>
<td>Pedestal profile evolution following L-H transition</td>
<td>PEP-27*</td>
<td>Multiple L-H transitions used to generate time-dependent data on pedestal profile and turbulence evolution</td>
</tr>
</tbody>
</table>
We participate in (and lead*) inter-machine collaborations through ITPA

<table>
<thead>
<tr>
<th>Description</th>
<th>ITPA designation</th>
<th>Notes on C-Mod contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of H-mode access with different X-point height</td>
<td>PEP-28</td>
<td>Comparisons of H-mode threshold power (and edge conditions) as X-point/strike point positions are varied. Will attempt to compare USN discharges to older USN cases prior to closure of upper divertor.</td>
</tr>
<tr>
<td>Power ratio – Hysteresis and access to H-mode with H~1</td>
<td>TC-2</td>
<td>Incidental data obtained in the course of EDA H-mode studies. Further controlled experiments are possible.</td>
</tr>
<tr>
<td>Scaling of the Low-Density Limit of the H-mode Threshold</td>
<td>TC-3*</td>
<td>Provided high-field data on current and field scaling of low-density limit. Evaluating impact of wall conditions, character of edge fueling</td>
</tr>
<tr>
<td>H-mode transition and confinement dependence on ionic species</td>
<td>TC-4</td>
<td>H-mode threshold power found to be significantly higher in He. Work to evaluate He H-mode confinement, ELM access is planned.</td>
</tr>
</tbody>
</table>
Pedestal research contributes to issues in 2007 FESAC “Priorities” Report*

- **A2. Integration of high-performance, steady-state, burning plasmas:** Create and conduct research, on a routine basis, of high performance core, edge and SOL plasmas in steady-state with the combined performance characteristics required for Demo.
 - Focus on high-performance regimes with ELMs either benign or suppressed altogether.
 - Both naturally occurring small- or no-ELM regimes and operation with externally determined relaxation of the pedestal will be explored.
 - A research focus will be to compare with the results of other devices and determine the capability of extrapolating to ITER and Demo.
- **A3. Validated Theory and Predictive Modeling:** Through developments in theory and modeling and careful comparison with experiments, develop a set of computational models that are capable of predicting all important plasma behavior in the regimes and geometries relevant for practical fusion energy.
 - Assist in the validation/de-validation of developing edge/pedestal codes.
 - Specific predictions of models which can be tested include flux-gradient relationships, ELM stability, edge flows and the coupling of momentum across the pedestal, and L-H transition triggers.
- **A6. Plasma Modification by Auxiliary Systems:** Establish the physics and engineering science of auxiliary systems that can provide power, particles, current and rotation at the appropriate locations in the plasma at the appropriate intensity.
 - Explore pedestal transport/structure modification using phenomena such as electron heating or non-inductively driven current from RF waves.

“Priorities, Gaps and Opportunities: Towards a Long Range Strategic Plan for Magnetic Fusion Energy”
Specific pedestal research contributions
to ReNeW thrusts

- **Thrust 2**: Control transient events
 - Edge plasma transport and stability, emphasizing ELM-free regimes

- **Thrust 4.** H-mode access and dependence on ion species.
 - Heating power required for attaining several regimes
 - L-H and H-L
 - Type III ELMy H-mode
 - H_{98}\sim 1 H-mode
 - Isotope mass and species scaling (i.e., hydrogen and helium plasmas) of the above regimes
 - Develop strategies for minimizing the power requirements
 - Excellent edge diagnostics
 - Density, temperature and flows
 - Edge fluctuations
 - Assess different heating schemes (ICRF vs. Ohmic vs. LHRF)

- **Thrust 4.** H-mode pedestals
 - *What is the physics of the edge pressure pedestal in high-confinement mode (H-mode) plasmas and how does it integrate with core models of heat and momentum transport?*
 - Comparison of pedestal structure with modeling
 - Test models of the H-mode pedestal structure and of the complete ELM cycle (including low torque)
 - Impact on the H-mode pedestal of
 - Helium or hydrogen operation
 - P_{in}/P_{th}\sim 1
 - Near DN
 - High neutral opacity

- **Thrust 6**: Develop predictive models
 - Strong connection to theory/modeling
 - Essential contributions of data for model validation
In conclusion

- C-Mod makes valuable contributions to pedestal physics relevant to burning plasmas and ITER development
 - L-H transition physics
 - Barrier structure (width, gradient scalings)
 - Edge relaxation mechanisms
- Pedestal program priorities
 - Improving experimental diagnosis of pedestal profiles, fluctuations, edge flows
 - Pedestal studies in an extended range of machine parameters, equilibrium configurations
 - Seeking better understanding of transport, edge stability through modeling, simulation
 - Collaboration with other facilities to develop multi-machine scalings
 - Optimization and control of pedestal in various confinement regimes
 - Support of integrated scenario development
- Poised to make critical contributions to ITER/ITPA goals and FES research targets
End of talk