The Dependence of Impurity Transport and Turbulence on Heating Mix in Low Collisionality, ELM-y H-mode Discharges

T. Odstrcil1, N.T. Howard1, C. Chrystal3, K. Thome3, E. Hollmann2, F. Sciortino1, P. Rodriguez-Fernandez1

1MIT PSFC, 77 Massachusetts Avenue
Cambridge, MA 02139
2UCSD 9500 Gilman Dr, La Jolla, CA 92093
3DIII-D National Fusion Facility, San Diego, CA

24th Join Task Force Meeting
March 19, 2019, Austin, TX
Motivation

- **Goal: Experimental validation of particle transport**
 - Gyrokinetic TGLF-SAT0 [G.M. Staebler NF 2017]
 - Gyrokinetic CGYRO [J. Candy JCP 2016]
 - Drift kinetic code NEO [E. Belly et al PPCF 2008]

- **Method: Investigate propagation of trace impurity**
 - Laser blow off injection of Aluminum and Tungsten

- **Experimental scenario:**
 - Compare dominantly ion and electron heated plasma
 - Designed via predict first approach

- **Predictive TRANSP+TGLF/NEO**
 - Up to 5-fold increase in impurity diffusion
 - Well above experimental uncertainties
Target Experimental Scenario

- Discharge designed to maximize variation in impurity turbulent flux
 - ELMy H-mode, 10-20Hz ELM frequency
 - $I_p = 0.9\text{MA}$, $B_T = -2.0\text{T}$, $\langle n_e \rangle = 4 \cdot 10^{19}\text{m}^{-2}$, $q_{95} = 5.8$
 - Weak MHD activity, without sawtooth

- NBI and ECH power scan, ECH resonance at $\rho = 0.25$ and 0.4
 - Constant torque of 2 Nm by applying counter-current beam

- Low collisionality to increase variation in T_e/T_i by reducing Q_{ei}
 - Modify turbulent regime from TEM/ITG mixture to dominant ITG
Electron mode dominates outside of ECH position both low and high-k.

Decrease in ECH power correlates with a grow of ITG mode and drop in medium and high-k amplitude of electron mode.
- **Al** injections are monitored by SXR, CER and SPRED
- Impurity after LBO propagates swiftly up to ECH resonance
 - Shown by a background subtracted SXR emissivity
- Localized increase of diffusion outside of ECH heating radius
 - Order of magnitude larger change than in existing published research
- Large edge localized inward pinch is necessary to match a long decay phase ($\tau_{\text{imp}} \approx 250\text{ms}$, $\tau_E \approx 120\text{ms}$)
• **Localized increase of diffusion outside of ECH heating radius**
 – Order of magnitude larger change than in existing published research

• **Large edge localized inward pinch is necessary to match a long decay phase** ($\tau_{\text{imp}} \sim 250\text{ms}$, $\tau_E \sim 120\text{ms}$)
Power balance (PB) heat flux was evaluated by TRANSP suite of codes
- Heat flux ratio Q_e/Q_i varied in range 0.5-5
- x_i is increased by 50% by ECH
- ECH increased x_e by factor of 2

Experimental PB x_i and x_e are well reproduced by flux matched TGYRO model
• Centrifugal asymmetry strongly enhances neoclassical transport
 – D Mach# is between 0.15-0.25
 – Al asymmetry is 5%, W is 50%!
 – Increase neoclassical diffusion of W by order of magnitude
 – Reverse direction of the neoclassical pinch by reducing T_i screening

• Only a limited variation between both phases of the discharge
• Regions dominated by neoclassical transport are excellently reproduced by NEO
 – Finite orbit width effects?

• Heat flux matched TGLF reproduces observed experimental trend
 – Diffusion overestimated in NBI only case
 – V/D is slightly negative (peaked profile)

• Ion scale nonlinear CGYRO
 – Ion heat flux matched
 – Well reproduces transport in both cases
 – V/D close to TGLF result
• Neoclassical flux exceeds experimental diffusion coefficients
 – Could be the poloidal asymmetry overestimated?
 – Effect of fast NBI ions

• D from TGLF is almost identical to aluminum profiles
 – Weak M/Z dependence
 – Difference between Al and W transport is primarily due to neoclassical transport
Summary of the validation effort

<table>
<thead>
<tr>
<th></th>
<th>Aluminum</th>
<th></th>
<th>Tungsten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEO</td>
<td>TGLF</td>
<td>CGYRO</td>
<td>NEO</td>
</tr>
<tr>
<td>NBI+ECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✗️</td>
</tr>
<tr>
<td>Midradius</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Outer</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>NBI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td>✔️</td>
<td>✗️</td>
<td>✔️</td>
<td>✗️</td>
</tr>
<tr>
<td>Midradius</td>
<td>✗️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Outer</td>
<td>✗️</td>
<td>✗️</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ✔️: Valid
- ✗️: Invalid