Turbulence Imaging of Spatiotemporal Fluctuation Structures in the Scrape-Off Layer of Alcator C-Mod

O. Grulke
MPI for Plasma Physics, EURATOM Association, Greifswald

J.L. Terry, B. LaBombard
MIT Plasma Science and Fusion Center, Cambridge

S.J. Zweben
Princeton Plasma Physics Laboratory, Princeton

O.E. Garcia, V. Naulin, A. Nielsen, J.J. Rasmussen
Risø National Laboratory, Risø
radial transport is characterized by large transport events

- transport is intermittent
- events are associated with fluctuation structures

intense investigation of structure formation in plasma turbulence

- 2D simulation / with statistical methods in experiment
- common result: dynamics of potential vortices
Example: SOL of W7-AS Stellarator

- conditional averaging of large Φ_{float} fluctuations
- radial size $\sim 1\text{cm}$
- lifetime a few $10\ \mu\text{s}$

-propagation is poloidal (with background ExB)

Grulke et al.
Phys. Plasmas 8(12), 2001
radial transport is characterized by large transport events

- transport is intermittent
- transport events are addressed to fluctuation structures

intense investigation of structure formation in plasma turbulence

- 2D simulation / with statistical methods in experiment
- common result: dynamics of potential vortices

in the last few years transport by direct radial propagation observed
Example: SOL of Alcator C-Mod
radial transport is characterized by large transport events
- transport is intermittent
- transport events are addressed to fluctuation structures

intense investigation of structure formation in plasma turbulence
- 2D simulation / with statistical methods in experiment
- common result: dynamics of potential vortices

in the last few years transport by direct radial propagation observed
- intermittent transport event (IPOs), avaloids, blobs propagate radially
 Terry et al., Phys. Plasmas 10(5), 2003
- cause ~50% of radial transport
 Boedo et al., Phys. Plasmas 10(5), 2003

detailed understanding of propagation mechanism / scaling important
Outline

- diagnostics: „gas puff imaging“ (GPI) on Alcator C-Mod
- potential distribution of blobs
- measured radial / poloidal blob velocities
- comparison of propagation speeds with 2D numerical simulations
Ohmic Discharges

\[I_P = 630 \text{ kA} \]
\[B_t = 5.4 \text{ T} \]
\[q_{95} = 6 \]
\[\int n \, dl = 8 \cdot 10^{19} \text{ m}^{-2} = 30\% n_G \]
SOL Diagnostics on Alcator C-Mod

reciprocating Langmuir probe ⇒ profiles \(n, T_e, \Phi \)

„gas puff imaging“
⇒ camera / diodes

\(D_\alpha \) Intensity \(\sim n_0 f(n_e, T_e) \)

reciprocating Langmuir probe ⇒ fluctuations

\(I_{\text{sat}} \sim n \sqrt{T_e} \)

\(\Phi_f \sim \Phi_P + \alpha T_e \)
Structure of Blobs parallel B

time-averaged emission profile

poloidal-toroidal camera field of view
Structure of Blobs parallel B
Parallel Correlation Measurements

250kHz Movie Camera
interference filter (Dγ)
coherent fiber bundle
300 frame camera

Radial Diode Array
(13 channels)
fast photo-diode
interference filter (Dα)
discrete fibers

Vertically scanning probe

C-Mod - top view
separatrix
limiter
gas-jet
gas-jet nozzle
flux-tube mapping probe to jet at correct 'q'
telescope
Parallel Correlation Measurements

250kHz Movie Camera
interference filter (D_α)
coherent fiber bundle

300 frame camera

Radial Diode Array
(13 channels)
interference filter (D_α)
discrete fibers

telecscope
gas-jet nozzle

Vertically scanning probe

C-Mod - top view
separatrix
limiter
gas-jet

connection length \sim3m

magn. mapping based on EFIT

LCFS
probes plunge

D_α diode array
connecting diode

vertical position [cm] vs. major radius [m]
Parallel Correlation

normalized correlation functions between one probe tip (I_{sat}) and connecting diode (D_α):
normalized correlation functions between one probe tip (Φ_{float}) and connecting diode (D_α):
Parallel Correlation: phase shift

Relative positions: potential and density structures

- Monopole-like density structure corresponds to dipole-like potential
- Poloidal phase shift $\pi/2 \Rightarrow$ in agreement with blob propagation picture
Parallel Correlation: phase shift

relative positions: potential and density structures

- monopole-like density structure corresponds to dipole-like potential
- poloidal phase shift $\pi/2$ \Rightarrow in agreement with blob propagation picture
2D Diagnostic – „turbulence imaging“
Propagation of Blobs

threshold on amplitude & spatial scale

2D correlation function

poloidal $E \times B$

$2\% c_s$
Density Evolution

- formation of blobs
- strong radial propagation
Blob Propagation

blob potential distribution

density

poloidal position \(\| p \| \)

potential

poloidal position \(\| p \| \)

radial position \(\| p \| \)
Blob Propagation

blob potential distribution

D_α, reduced res.

potential
Blob Propagation

blob potential distribution

D_α, reduced res.

poloidal / radial velocities

Potential

Poloidal position [p_\parallel]

Radial position [$p_\|$

PDF

Poloidal velocity [c_\parallel]

Radial velocity [$c_\|$

PDF
Summary

- fluctuation structures (blobs) show strong radial propagation
 - over distances larger than auto-correlation length
 - hit first wall / limiter

- potential associated with blob is dipole
 - vertical electric field \rightarrow radial $E \times B$
 - in agreement with blob models

- measured radial velocities on the order of $2-3\% c_s$

- comparison with numerical model shows reasonable agreement
 - formation of blobs
 - similar radial propagation speeds ($\leq 5\% c_s$)
 - suggests fine structure (not resolved with GPI)