Operation of Alcator C-Mod with High-Z Plasma Facing Components: With and Without Boronization

- Operational experience with solid molybdenum Plasma Facing Components
- Effects of boronization
- Localized erosion of boron coatings
- Role of ICRF sheath enhancement

21st IAEA Fusion Energy Conference
Chengdu, China
Paper EX/3-4
C-Mod very well Suited to Address High-Z PFC Issues

- C-Mod exclusively employs solid high-Z PFCs (Mo)
 - Mo very similar to tungsten (W)
 - Erosion
 - D retention
 - Radiation characteristics
- C-Mod divertor conditions can be equivalent to ITER
 - Power density, divertor n_e, T_e
 - SOL: opaque to neutrals, radiation
 - ICRF heating

Report here on experiments comparing operation with uncoated and coated Mo
Why Care about High-Z?

- In ITER, serious concern about tritium retention (co-deposition with carbon)
- Looking beyond ITER, to reactors, additional issues
 - Erosion at first wall
 - Neutron damage to carbon-based materials
 - Drop in thermal conductivity
 - Material swelling
- Currently ITER plans to relegate carbon to small fraction of PFC surfaces
- Multiple studies have led reactor designers to choose tungsten

Simple extrapolation of tritium retention from JET and TFTR results (carbon PFCs)
High-Z has Advantages; Carries Risks

• Advantages
 – Very low erosion rate
 – Reasonable resistance to neutron damage
 – Low tritium retention (at least in some non-tokamak tests)

• Risks
 – Melting leads to enhanced heat loads
 – Allowable W concentration in the core plasma is very low (<10⁻⁵)

• Most of the world’s divertor tokamak database developed using carbon PFCs*

*ASDEX-Upgrade using W-coated graphite [Dux, previous talk]
JET planning to use W
Boronization used Routinely for Wall Conditioning

• Discharge cleaning and boronization accomplished using Electron Cyclotron resonance low temperature plasma Discharge (ECD)
• ECD parameters:
 – 2.5 kW, 2.45 GHz RF
 – Use toroidal field only; scan to move resonance from inner wall to beyond outer limiters (B\textsubscript{resonance} = 0.088 tesla)
 – \(T_e \sim 10 \text{ eV}, \ T_i < 1 \text{ eV}, \ n_e \sim 10^{16} \text{ m}^{-3} \)
 – Cleaning using deuterium
 – Boronization using 10% \(\text{B}_2\text{D}_6 \) / 90% He
• \(~10\)-hour boronization
 – average coverage of 200 nanometer
Boronization used Routinely for Wall Conditioning

- Boronization employed almost from the start of high power ICRF operation on C-Mod
 - Relatively thick B layers built up in most areas (~6 mm)
- Secondary protection tiles (around RF antennas) utilized boron-nitride
- Prior to start of 2005 campaign
 - All PFC surfaces cleaned of B
 - BN replaced with Mo
Significant D Retention with Clean Metal PFCs

Retention in C-mod is not caused by co-deposition with boron

- Similar retention rates observed with all-metal versus boronized PFCs: 20-40% of fuelled gas, ~0.5% of incident ion flux.

- DIONISOS facility will expose Mo target to high-flux, low-energy D plasma to study retention & saturation.

No evidence of saturation in consecutive, non-disruptive shots

Retention inconsistent with models based on ion beam data

Whyte, EX/P4-29
Clean Mo PFCs with High Power ICRF Heating Leads to High Core Radiation

- Unboronized surfaces incompatible with good energy confinement using strong ICRF auxiliary heating ($\tau_H/\tau_{\text{ITER89}} < 1.3$)
- In all cases Mo radiation from the confined plasma rises rapidly, cooling the plasma
 - Pedestal pressure is suppressed
- Various approaches to improve not effective
 - Increase outer gaps
 - Force divertor detachment
 - Cool SOL with D_2 gas
 - Li pellet wall conditioning
 - Boron dust injection
Boronization Required for High Performance Until Recently, Performed Overnight

- After ECD boronization, Mo radiation reduced by factor of 5 or more
 - Fe also reduced
 - B increases
- Energy confinement ~doubles
Monotonic Improvement with Reduced Radiation

- Radiation cools the pedestal
 - Reduced pedestal pressure
 - Profile stiffness leads to decreased core temperatures and pressures
 - Mo radiates inward of the pedestal, B mostly outside
- After each overnight boronization:
 - Radiation fractions drop
 - Energy confinement in H-Mode improves
Molybdenum is the Primary Radiator Prior to Boronization

- Prior to boronization
 - Mo accounts for majority of the radiated power
 - Fe accounts for much of the rest (~15%)
- After boronization
 - Mo radiation fraction ¼ to ½ of the reduced total
 - Fe is very small (~4%)
 - B and F account for the rest
Benefits of Overnight Boronization (10 hours)
Last 20 to 50 Discharges

• Following overnight boronization, extended run day to examine evolution with plasma discharges
 – Mo levels rise monotonically from shot to shot
 • Fe does not increase
 – Confinement decrease apparent after ~20 high power discharges (~50 MJ total input energy)
• Post-campaign tile analysis shows thick boron layers on most tiles
 – Exceptions
 • Outer divertor, near usual strike point
 • Top of outboard divertor, especially at leading edges
Inter-Shot Boronization Works Well
Effects Persist for ~ 1 Discharge

- Close to best performance recovered for discharge following 30 minutes of EC between-shot boronization
 - Localized boron coverage ~100 nanometer
- Effect wears off after 1 to 2 discharges
 - Opportunity to study and try to optimize parameters
EC Resonance Position Affects Efficacy

Resonance scanned ±5 cm

- Plasma breakdown at EC resonance (cylinder at fixed R)
 - plasma unconfined to larger R
- Clear result that some locations are better than others
EC Resonance Position Affects Efficacy
Appears to optimize near top of outer divertor

- Plasma breakdown at EC resonance (cylinder at fixed R)
 - plasma unconfined to larger R
- Clear result that some locations are better than others
 - Maps to top of outer divertor
 - Away from highest heat-flux region near strike point
ICRF Sheath Enhancement Responsible for Boron Erosion

- For the equilibrium studied, field lines map from the ICRF antennas to top of outer divertor
- RF sheath-potential enhancement can lead to increased sputtering
- Antennas are on opposite sides of the torus
 - Corresponding field line mapping is to toroidally distinct regions at top of outer divertor
- Conjecture: Boron is preferentially eroded in area with enhanced sheath
 - Supported by energizing different antennas on alternate shots
 - RF erodes boron at least 5 times as fast as ohmic (per joule)
 - Direct sheath potential probe measurements confirm ($V_{\text{sheath}} > 100V$) [Wukitch, FT/1-6]
ICRF Sheath Enhancement Responsible for Boron Erosion

- For the equilibrium studied, field lines map from the ICRF antennas to top of outer divertor
- RF sheath-potential enhancement can lead to increased sputtering
- Antennas are on opposite sides of the torus
 - Corresponding field line mapping is to toroidally distinct regions at top of outer divertor
- Conjecture: Boron is preferentially eroded in area with enhanced sheath
 - Supported by energizing different antennas on alternate shots
 - RF erodes boron at least 5 times as fast as ohmic (per joule)
 - Direct sheath potential probe measurements confirm \(V_{\text{sheath}} > 100 \text{V} \) [Wukitch, FT/1-6]
Summary

- High power heating with high-Z metal PFCs on C-Mod yields high core radiated power and reduced performance
- ECD boronization is very effective in reducing radiation from high-Z impurities (Mo)
 - Leads to dramatic performance improvements
- Between-shot boronization effective (~1 tokamak discharge)
 - Investigation into erosion localization, Mo sources
 - High heat-flux region of the divertor, near strike points, is not the critical source region for Mo which reaches the core plasma
 - ICRF sheath enhancement (>100 V) at top of outboard divertor implicated
- Possible implications for ITER
 - Tritium retention in high-Z PFCs?
 - Compatibility of tungsten?
 - Wall-coating/conditioning for long-pulse?