Study of H-mode Access in the Alcator C-Mod Tokamak: Density, Toroidal Field and Divertor Geometry Dependence

Y.Ma, J.W.Hughes, B.Labombard, A.E.Hubbard, R.M.Churchill, J.Terry, S.Zweben, E.S.Marmar, and the Alcator C-Mod team

Motivation: H-mode is envisioned as a potential baseline scenario for ITER plasma operation. Therefore, knowing the global H-mode threshold power and local plasma edge conditions for H-mode access is important. This poster presents a comprehensive study of H-mode access conditions on the Alcator C-Mod tokamak. All cases included in this study are deuterium plasmas, with the ion grad-B drift in the favorable direction for H-mode access, i.e., towards the active X-point. All H-mode transitions were induced with ICRF as the sole auxiliary heating power, configured in the fundamental hydrogen minority heating scenario.

1. Global H-mode threshold power (P_{th})

- 1.5 Comparison to the RDZ model

$$\sin\alpha \approx 0.5-0.6 \ (\text{an 'L'-shaped boundary})$$

Motivation:

- C-Mod experimental results show reasonable experiments [2] conducted to study the effect of divertor geometry on P_{th}.
- Performed in vertical-plate vs. slot divertor (normally, C-Mod is operated with the vertical-plate divertor), by varying the outer separatrix strike point location.
- 5.4T/0.9-1.0MA, ICRF on-axis heating.
- Trigger L-H transition when plasma is operated with the slot divertor, at moderate and high density; this effect disappears at low density.

- Reduction in P_{th} is U-shaped, with a local minimum at $P_{th} = 0.95$.
- Local P_{th} increases sharply (stronger than linear) by ICRF power deposition or divertor geometry.
- A significant implication of the FM3 model: P_{th} at sheath-to-conduction limited regime transition ($\eta_{sol} = 0.15$), this is also consistent with experiment.

- The FM3 model also reproduces the divertor geometry effects.
- Reason for the P_{th} reduction in slot divertor: longer connection length. The FM3 model does not reproduce this.

2. Local edge conditions just before the L-H transition

- 3. Dependence of P_{th} on divertor geometry

Divertor X-point configuration can strongly influence P_{th}, dedicated C-MOD experiments [2] conducted to study the effect of divertor geometry on P_{th}.

Experimental Setup:

- Performed in vertical-plate vs. slot divertor (normally, C-Mod is operated with the vertical-plate divertor), by varying the outer separatrix strike point location.
- 5.4T/0.9-1.0MA, ICRF on-axis heating.

Key Results:

- Significant ($>50\%$) reduction in P_{th} when plasma is operated with the slot divertor, at moderate and high density; this effect disappears at low density.
- Density scaling of P_{th} remains U-shaped with slot divertor.
- Reduction in P_{th} best correlates with outer leg length, or LFS SOL connection length.

- The FM3 model gives asymptotic expressions for P_{th}.

Dependence of P_{th} on ICRF resonance location

- An ITER-relevant aspect: ICRF will use combination of multiple heating methods, each may have different power deposition profiles.

Experimental Setup:

- Use two-frequency (80 and 70MHz) ICRF antennas. 80MHz ICRF waves injected in each discharge to induce H-mode.

Key Results:

- P_{th} is not affected by ICRF power deposition location, unless ICRF resonance is placed in plasma edge near the inner wall.
- Significant inverse (90MHz) in P_{th} probably due to a degradation in ICRF power absorption.

- 4. Comparison to the FM3 model for H-mode threshold power

- The FM3 model gives asymptotic expressions for P_{th}.
- The FM3 model predicts P_{th} based on edge-SOL physics.
- No clear dependence on P_{th}, except for ICRF power deposition location.
- Consistent with experiment; quantitatively agreement also good.

- 3. Comparison to the RDZ model for the L-H transition

- Two key parameters of the RDZ model [3]:

$$\eta_{sol} = 0.9, 0.5 \ (\text{an 'L'-shaped boundary})$$

- C-Mod experimental results show reasonable agreement with the RDZ model predictions [1].
- Suggest: enhancement in finite-beta effect (due to increasing pressure gradient); stronger nonlinear interaction between ICRF waves and shear Alfven waves.

Presented on the 24th IAEA FEC, San Diego, USA, 9/10/2012